MULTISCALE ANALYSIS IN SOBOLEV SPACES ON THE SPHERE

被引:57
作者
Le Gia, Q. T. [1 ]
Sloan, I. H. [1 ]
Wendland, H. [2 ]
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Univ Oxford, Math Inst, Oxford OX1 3LB, England
基金
澳大利亚研究理事会;
关键词
multiscale; approximation; interpolation; radial basis functions; unit sphere; SCATTERED DATA INTERPOLATION; RADIAL BASIS FUNCTIONS; APPROXIMATION;
D O I
10.1137/090774550
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a multiscale approximation scheme at scattered sites for functions in Sobolev spaces on the unit sphere S-n. The approximation is constructed using a sequence of scaled, compactly supported radial basis functions restricted to S-n. A convergence theorem for the scheme is proved, and the condition number of the linear system is shown to stay bounded by a constant from level to level, thereby establishing for the first time a mathematical theory for multiscale approximation with scaled versions of a single compactly supported radial basis function at scattered data points.
引用
收藏
页码:2065 / 2090
页数:26
相关论文
共 25 条
[1]  
[Anonymous], 1942, Duke Math. J., DOI 10.1215/S0012-7094-42-00908-6
[2]  
[Anonymous], 1999, MULTISCALE MODELLING
[3]  
[Anonymous], 1966, TREATISE THEORY BESS
[4]   APPROXIMATION FROM SHIFT-INVARIANT SUBSPACES OF L(2(R(D)) [J].
DEBOOR, C ;
DEVORE, RA ;
RON, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 341 (02) :787-806
[5]   CONTROLLED APPROXIMATION AND A CHARACTERIZATION OF THE LOCAL APPROXIMATION ORDER [J].
DEBOOR, C ;
JIA, RQ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 95 (04) :547-553
[6]   Multistep scattered data interpolation using compactly supported radial basis functions [J].
Floater, MS ;
Iske, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 73 (1-2) :65-78
[7]  
Freeden W., 1998, Constructive Approximation on the Sphere: with Applications to Geomathematics
[8]  
Gray A., 1952, A Treatise on Bessel Functions and Their Applications to Physics
[9]   Error estimates for multilevel approximation using polyharmonic splines [J].
Hales, SJ ;
Levesley, J .
NUMERICAL ALGORITHMS, 2002, 30 (01) :1-10
[10]  
Hochstadt H., 1986, The Functions of Mathematical Physics