Magnoliaceae is a primitive taxon in the angiosperms, comprising approximately 240 species in 2-17 genera. Many of them have been widely cultivated due to their horticultural and medicinal value. However, there are uncertainties and controversies about the delimitation of the genera except Liriodendron L. in this family. The Yulania taxa is also the focus of dispute at the genus and section levels. In this study, we compared ten Yulania plastomes, including the newly sequenced M. polytepala. The plastome-wide comparative analysis demonstrated that 1) Yulania cp genomes were highly conserved, and the majority differences existed in IR regions with the loss/retention of trnV-GAC or ycf15 gene, 2) mutational hotspots with high levels of nucleotide diversity (Pi > 0.02) existed in both coding (rpoA, and ycf1) and no-coding (ccsA-ndhD, ndhE-ndhG, ndhF-rpl32, petA-psbJ, rpl32-tmL, rps3-rpsl9, and tmH-psbA) regions among the genus Yulania. Combined with other data from Magnoliaceae plastomes, our reconstructed molecular phylogenetic tree revealed that Yulania is monophyletic, separated from the genus Magnolia L. (=Magnolia subg. Magnolia L.), but seems a sister of Michelia L. Moreover, M. polytepala which belongs to the genus Yulania is most closely related to M. lilliflora. All these results indicated that plastome data may contribute to investigating taxonomy, population genetics and phylogeny of Yulania.