The microRNA-29 family: role in metabolism and metabolic disease

被引:70
作者
Dalgaard, Louise T. [1 ]
Sorensen, Anja E. [1 ]
Hardikar, Anandwardhan A. [1 ,2 ]
Joglekar, Mugdha, V [2 ]
机构
[1] Roskilde Univ, Dept Sci & Environm, Roskilde, Denmark
[2] Western Sydney Univ, Sch Med, Diabet & Islet Biol Grp, Sydney, NSW, Australia
来源
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY | 2022年 / 323卷 / 02期
基金
澳大利亚研究理事会; 英国医学研究理事会;
关键词
fibrosis; insulin resistance; islet; miR-29; obesity; INSULIN-RESISTANCE; LIPID-METABOLISM; GENE-EXPRESSION; MIR-29; GLUCOSE; BETA; FIBROSIS; LIVER; IDENTIFICATION; TARGET;
D O I
10.1152/ajpcell.00051.2022
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The microRNA-29 family members miR-29a-3p, miR-29b-3p, and miR-29c-3p are ubiquitously expressed and consistently increased in various tissues and cell types in conditions of metabolic disease, obesity, insulin resistance, and type 2 diabetes. In pancreatic beta cells, miR-29a is required for normal exocytosis, but increased levels are associated with impaired beta-cell function. Similarly, in liver, miR-29 species are higher in models of insulin resistance and type 2 diabetes, and either knock-out or depletion using a microRNA inhibitor improves hepatic insulin resistance. In skeletal muscle, miR-29 family upregulation is associated with insulin resistance and altered substrate oxidation, and similarly, in adipocytes, overexpression of miR-29a leads to insulin resistance. Blocking miR-29a using nucleic acid antisense therapeutics show promising results in preclinical animal models of obesity and type 2 diabetes, although the wide-spread expression pattern of miR-29 family members complicates the exploration of single target tissues. However, in fibrotic diseases, such as in late complications of diabetes and metabolic disease (diabetic kidney disease, nonalcoholic steatohepatitis), miR29 species expression is suppressed by TGF-beta allowing increased extracellular matrix collagen to form. In the clinical setting, circulating levels of miR-29a and miR-29b are consistently increased in type 2 diabetes and in gestational diabetes and are also possible prognostic markers for deterioration of glucose tolerance. In conclusion, miR-29 family miRNAs play an essential role in various organs relevant to intermediary metabolism and its upregulation contributes to impaired glucose metabolism, whereas it suppresses fibrosis development. Thus, a correct balance of levels of miR-29 family miRNA seems important for cellular and organ homeostasis in metabolism.
引用
收藏
页码:C367 / C377
页数:11
相关论文
共 89 条
[41]   MicroRNA-29 Fine-tunes the Expression of Key FOXA2-Activated Lipid Metabolism Genes and Is Dysregulated in Animal Models of Insulin Resistance and Diabetes [J].
Kurtz, C. Lisa ;
Peck, Bailey C. E. ;
Fannin, Emily E. ;
Beysen, Carine ;
Miao, Ji ;
Landstreet, Stuart R. ;
Ding, Shengli ;
Turaga, Vandana ;
Lund, P. Kay ;
Turner, Scott ;
Biddinger, Sudha B. ;
Vickers, Kasey C. ;
Sethupathy, Praveen .
DIABETES, 2014, 63 (09) :3141-3148
[42]   1 A Systematic Review of miR-29 in Cancer [J].
Kwon, Jason J. ;
Factora, Tricia D. ;
Dey, Shatovisha ;
Kota, Janaiah .
MOLECULAR THERAPY-ONCOLYTICS, 2019, 12 :173-194
[43]   Expression and Localization of microRNAs in Perinatal Rat Pancreas: Role of miR-21 in Regulation of Cholesterol Metabolism [J].
Larsen, Louise ;
Rosenstierne, Maiken W. ;
Gaarn, Louise W. ;
Bagge, Annika ;
Pedersen, Lykke ;
Dahmcke, Christina M. ;
Nielsen, Jens H. ;
Dalgaard, Louise T. .
PLOS ONE, 2011, 6 (10)
[44]   THE C-ELEGANS HETEROCHRONIC GENE LIN-4 ENCODES SMALL RNAS WITH ANTISENSE COMPLEMENTARITY TO LIN-14 [J].
LEE, RC ;
FEINBAUM, RL ;
AMBROS, V .
CELL, 1993, 75 (05) :843-854
[45]   Role of the microRNA-29 family in myocardial fibrosis [J].
Li, Changyan ;
Wang, Nan ;
Rao, Peng ;
Wang, Limeiting ;
Lu, Di ;
Sun, Lin .
JOURNAL OF PHYSIOLOGY AND BIOCHEMISTRY, 2021, 77 (03) :365-376
[46]   Pancreatic β cells control glucose homeostasis via the secretion of exosomal miR-29 family [J].
Li, Jing ;
Zhang, Yujing ;
Ye, Yangyang ;
Li, Dameng ;
Liu, Yuchen ;
Lee, Eunyoung ;
Zhang, Mingliang ;
Dai, Xin ;
Zhang, Xiang ;
Wang, Shibei ;
Zhang, Junfeng ;
Jia, Weiping ;
Zen, Ke ;
Vidal-Puig, Antonio ;
Jiang, Xiaohong ;
Zhang, Chen-Yu .
JOURNAL OF EXTRACELLULAR VESICLES, 2021, 10 (03)
[47]   MicroRNA-29a-c decrease fasting blood glucose levels by negatively regulating hepatic gluconeogenesis [J].
Liang, Jichao ;
Liu, Changzheng ;
Qiao, Aijun ;
Cui, Ying ;
Zhang, Huabing ;
Cui, Anfang ;
Zhang, Shutian ;
Yang, Yanli ;
Xiao, Xinhua ;
Chen, Yong ;
Fang, Fude ;
Chang, Yongsheng .
JOURNAL OF HEPATOLOGY, 2013, 58 (03) :535-542
[48]   MicroRNA-29a Suppresses CD36 to Ameliorate High Fat Diet-Induced Steatohepatitis and Liver Fibrosis in Mice [J].
Lin, Hung-Yu ;
Wang, Feng-Sheng ;
Yang, Ya-Ling ;
Huang, Ying-Hsien .
CELLS, 2019, 8 (10)
[49]   Differences in microRNA-29 and Pro-fibrotic Gene Expression in Mouse and Human Hypertrophic Cardiomyopathy [J].
Liu, Yamin ;
Afzal, Junaid ;
Vakrou, Styliani ;
Greenland, Gabriela, V ;
Talbot, C. Conover, Jr. ;
Hebl, Virginia B. ;
Guan, Yufan ;
Karmali, Rehan ;
Tardiff, Jil C. ;
Leinwand, Leslie A. ;
Olgin, Jeffrey E. ;
Das, Samarjit ;
Fukunaga, Ryuya ;
Abraham, M. Roselle .
FRONTIERS IN CARDIOVASCULAR MEDICINE, 2019, 6
[50]   Distribution of miRNA expression across human tissues [J].
Ludwig, Nicole ;
Leidinger, Petra ;
Becker, Kurt ;
Backes, Christina ;
Fehlmann, Tobias ;
Pallasch, Christian ;
Rheinheimer, Steffi ;
Meder, Benjamin ;
Staehler, Cord ;
Meese, Eckart ;
Keller, Andreas .
NUCLEIC ACIDS RESEARCH, 2016, 44 (08) :3865-3877