On a generalized James constant

被引:55
作者
Dhompongsa, S [1 ]
Kaewkhao, A [1 ]
Tasena, S [1 ]
机构
[1] Chiang Mai Univ, Fac Sci, Dept Math, Chiang Mai 50200, Thailand
关键词
James constant; uniformly nonsquare space; uniform normal structure;
D O I
10.1016/S0022-247X(03)00408-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a generalized James constant J(a, X) for a Banach space X, and prove that, if J(a. X) < (3 +a)/2 for some a is an element of [0, 1], then X has uniform normal structure. The class of spaces X with J (1, X) < 2 is proved to contain all u-spaces and their generalizations. For the James constant J(X) itself, we show that X has uniform normal structure provided that J(X) < (1 + root5)/2, improving the previous known upper bound at 3/2. Finally, we establish the stability of uniform normal structure of Banach spaces. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:419 / 435
页数:17
相关论文
共 27 条
[1]  
[Anonymous], GRADUATE TEXTS MATH
[2]   NORMAL STRUCTURE COEFFICIENTS FOR BANACH-SPACES [J].
BYNUM, WL .
PACIFIC JOURNAL OF MATHEMATICS, 1980, 86 (02) :427-436
[4]   Generalised Jordan-Von Neumann constants and uniform normal structure [J].
Dhompongsa, S ;
Piraisangjun, P ;
Saejung, S .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2003, 67 (02) :225-240
[5]   MODULI OF CONVEXITY AND SMOOTHNESS [J].
FIGIEL, T .
STUDIA MATHEMATICA, 1976, 56 (02) :121-155
[6]   ON 2 CLASSES OF BANACH-SPACES WITH UNIFORM NORMAL STRUCTURE [J].
GAO, J ;
LAU, KS .
STUDIA MATHEMATICA, 1991, 99 (01) :41-56
[7]   Normal structure and the arc length in Banach spaces [J].
Gao, J .
TAIWANESE JOURNAL OF MATHEMATICS, 2001, 5 (02) :353-366
[8]   ON THE GEOMETRY OF SPHERES IN NORMED LINEAR-SPACES [J].
GAO, J ;
LAU, KS .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1990, 48 :101-112
[9]  
Gao J., 2000, J MATH-UK, V20, P241
[10]  
Garcia-Falset J, 2001, HANDBOOK OF METRIC FIXED POINT THEORY, P201