3PSDF: Three-Pole Signed Distance Function for Learning Surfaces with Arbitrary Topologies

被引:27
作者
Chen, Weikai [1 ]
Lin, Cheng [1 ]
Li, Weiyang [1 ]
Yang, Bo [1 ]
机构
[1] Tencent Games, Digital Content Technol Ctr, Shenzhen, Peoples R China
来源
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022) | 2022年
关键词
D O I
10.1109/CVPR52688.2022.01797
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent advances in learning 3D shapes using neural implicit functions have achieved impressive results by breaking the previous barrier of resolution and diversity for varying topologies. However, most of such approaches are limited to closed surfaces as they require the space to be divided into inside and outside. More recent works based on unsigned distance function have been proposed to handle complex geometry containing both the open and closed surfaces. Nonetheless, as their direct outputs are point clouds, robustly obtaining high -quality meshing results from discrete points remains an open question. We present a novel learnable implicit representation, called three pole signed distance function (3PSDF), that can represent non-watertight 3D shapes with arbitrary topologies while supporting easy field-to-mesh conversion using the classic Marching Cubes algorithm. The key to our method is the introduction of a new sign, the NULL sign, in addition to the conventional in and out labels. The existence of the null sign could stop the formation of a closed isosurface derived from the bisector of the in/out regions. Further, we propose a dedicated learning framework to effectively learn 3PSDF without worrying about the vanishing gradient due to the null labels. Experimental results show that our approach outperforms the previous state-of-the-art methods in a wide range of benchmarks both quantitatively and qualitatively.
引用
收藏
页码:18501 / 18510
页数:10
相关论文
共 44 条
[1]  
Atzmon Matan, 2020, IEEE CVF C CVPR
[2]   The ball-pivoting algorithm for surface reconstruction [J].
Bernardini, F ;
Mittleman, J ;
Rushmeier, H ;
Silva, C ;
Taubin, G .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 1999, 5 (04) :349-359
[3]   Multi-Garment Net: Learning to Dress 3D People from Images [J].
Bhatnagar, Bharat Lal ;
Tiwari, Garvita ;
Theobalt, Christian ;
Pons-Moll, Gerard .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :5419-5429
[4]  
Chang Angel X, 2015, Technical Report
[5]   Learning Implicit Fields for Generative Shape Modeling [J].
Chen, Zhiqin ;
Zhang, Hao .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :5932-5941
[6]  
Chen ZS, 2019, CANC SENSIT AGENTS, V4, P1, DOI 10.1016/C2016-0-03564-7
[7]  
Chibane J, 2020, ADV NEUR IN, V33
[8]   Implicit Functions in Feature Space for 3D Shape Reconstruction and Completion [J].
Chibane, Julian ;
Alldieck, Thiemo ;
Pons-Moll, Gerard .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :6968-6979
[9]  
Chibane Julian, 2020, IEEE C CVPR
[10]   4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks [J].
Choy, Christopher ;
Gwak, JunYoung ;
Savarese, Silvio .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3070-3079