Fractal Weyl laws and wave decay for general trapping

被引:2
作者
Dyatlov, Semyon [1 ]
Galkowski, Jeffrey [2 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] McGill Univ, Dept Math, Montreal, PQ, Canada
关键词
resonances; Weyl law; wave decay; POLLICOTT-RUELLE RESONANCES; MICROLOCAL ANALYSIS; OPEN SYSTEMS; UPPER-BOUNDS; DENSITY; NUMBER; FLOWS; MAPS;
D O I
10.1088/1361-6544/aa8712
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a Weyl upper bound on the number of scattering resonances in strips for manifolds with Euclidean infinite ends. In contrast with previous results, we do not make any strong structural assumptions on the geodesic flow on the trapped set (such as hyperbolicity) and instead use propagation statements up to the Ehrenfest time. By a similar method we prove a decay statement with high probability for linear waves with random initial data. The latter statement is related heuristically to the Weyl upper bound. For geodesic flows with positive escape rate, we obtain a power improvement over the trivial Weyl bound and exponential decay up to twice the Ehrenfest time.
引用
收藏
页码:4301 / 4343
页数:43
相关论文
共 36 条
  • [1] [Anonymous], 2012, GRADUATE STUDIES MAT
  • [2] Experimental Observation of the Spectral Gap in Microwave n-Disk Systems
    Barkhofen, S.
    Weich, T.
    Potzuweit, A.
    Stoeckmann, H-J
    Kuhl, U.
    Zworski, M.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (16)
  • [3] Bony JF, 2001, INT MATH RES NOTICES, V2001, P817
  • [4] Burq N, 2013, ANN SCI ECOLE NORM S, V46, P917
  • [5] Partially hyperbolic geodesic flows
    Carneiro, Fernando
    Pujals, Enrique
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (05): : 985 - 1014
  • [6] Christianson H, 2013, ARXIV13036172
  • [7] Sharp polynomial bounds on the number of Pollicott-Ruelle resonances
    Datchev, Kiril
    Dyatlov, Semyon
    Zworski, Maciej
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2014, 34 : 1168 - 1183
  • [8] Fractal Weyl laws for asymptotically hyperbolic manifolds
    Datchev, Kiril
    Dyatlov, Semyon
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2013, 23 (04) : 1145 - 1206
  • [9] Dimassi M., 1999, Spectral asymptotics in the semiclassical limit, V268
  • [10] Resonances for Open Quantum Maps and a Fractal Uncertainty Principle
    Dyatlov, Semyon
    Jin, Long
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 354 (01) : 269 - 316