Over 1000-fold enhancement of upconversion luminescence using water-dispersible metal-insulator-metal nanostructures

被引:125
作者
Das, Ananda [1 ]
Mao, Chenchen [2 ]
Cho, Suehyun [2 ]
Kim, Kyoungsik [3 ]
Park, Wounjhang [2 ,4 ]
机构
[1] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[2] Univ Colorado, Dept Elect Comp & Energy Engn, Boulder, CO 80309 USA
[3] Yonsei Univ, Sch Mech Engn, 50 Yonsei Ro, Seoul 03722, South Korea
[4] Univ Colorado, Mat Sci & Energy Engn, Boulder, CO 80309 USA
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
PLASMON ENHANCEMENT; ENERGY-TRANSFER; GOLD NANORODS; NANOPARTICLES; NANOCRYSTALS; ER3+; PHOTOLUMINESCENCE; NANOCOMPOSITES; FLUORESCENCE; MODULATION;
D O I
10.1038/s41467-018-07284-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Rare-earth activated upconversion nanoparticles (UCNPs) are receiving renewed attention for use in bioimaging due to their exceptional photostability and low cytotoxicity. Often, these nanoparticles are attached to plasmonic nanostructures to enhance their photoluminescence (PL) emission. However, current wet-chemistry techniques suffer from large inhomogeneity and thus low enhancement is achieved. In this paper, we report lithographically fabricated metal-insulator-metal (MIM) nanostructures that show over 1000-fold enhancement of their PL. We demonstrate the potential for bioimaging applications by dispersing the MIMs into water and imaging bladder cancer cells with them. To our knowledge, our results represent one and two orders of magnitude improvement, respectively, over the best lithographically fabricated structures and colloidal systems in the literature. The large enhancement will allow for bioimaging and therapeutics using lower particle densities or lower excitation power densities, thus increasing the sensitivity and efficacy of such procedures while decreasing potential side effects.
引用
收藏
页数:11
相关论文
共 53 条
[1]   Upconversion and anti-stokes processes with f and d ions in solids [J].
Auzel, F .
CHEMICAL REVIEWS, 2004, 104 (01) :139-173
[2]   Coupling between a Molecular Charge-Transfer Exciton and Surface Plasmons in a Nanostructured Metal Grating [J].
Azarova, Natalia ;
Ferguson, Andrew J. ;
van de Lagemaat, Jao ;
Rengnath, Elisabeth ;
Park, Wounjhang ;
Johnson, Justin C. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (16) :2658-2663
[3]   Plasma-Mediated Nanocavitation and Photothermal Effects in Ultrafast Laser Irradiation of Gold Nanorods in Water [J].
Boulais, Etienne ;
Lachaine, Remi ;
Meunier, Michel .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (18) :9386-9396
[4]   Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals [J].
Chatteriee, Dev K. ;
Rufalhah, Abdul J. ;
Zhang, Yong .
BIOMATERIALS, 2008, 29 (07) :937-943
[5]   Core/Shell NaGdF4:Nd3+/NaGdF4 Nanocrystals with Efficient Near-Infrared to Near-Infrared Downconversion Photoluminescence for Bioimaging Applications [J].
Chen, Guanying ;
Ohulchanskyy, Tymish Y. ;
Liu, Sha ;
Law, Wing-Cheung ;
Wu, Fang ;
Swihart, Mark T. ;
Agren, Hans ;
Prasad, Pares N. .
ACS NANO, 2012, 6 (04) :2969-2977
[6]  
Cheng L, 2011, NANOMEDICINE-UK, V6, P1327, DOI [10.2217/nnm.11.56, 10.2217/NNM.11.56]
[7]   Facile Preparation of Multifunctional Upconversion Nanoprobes for Multimodal Imaging and Dual-Targeted Photothermal Therapy [J].
Cheng, Liang ;
Yang, Kai ;
Li, Yonggang ;
Chen, Jianhua ;
Wang, Chao ;
Shao, Mingwang ;
Lee, Shuit-Tong ;
Liu, Zhuang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (32) :7385-7390
[8]   Functionalized Gold Nanorods for Thermal Ablation Treatment of Bladder Cancer [J].
Cho, S. K. ;
Emoto, K. ;
Su, L. -J. ;
Yang, X. ;
Flaig, T. W. ;
Park, W. .
JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2014, 10 (07) :1267-1276
[9]  
Deng RR, 2015, NAT NANOTECHNOL, V10, P237, DOI [10.1038/NNANO.2014.317, 10.1038/nnano.2014.317]
[10]   A three-color, solid-state, three-dimensional display [J].
Downing, E ;
Hesselink, L ;
Ralston, J ;
Macfarlane, R .
SCIENCE, 1996, 273 (5279) :1185-1189