Rotational Variance-Based Data Augmentation in 3D Graph Convolutional Network

被引:6
作者
Kim, Jihoo [1 ]
Kim, Yeji [1 ]
Lee, Eok Kyun [1 ]
Chae, Chong Hak [3 ]
Lee, Kwangho [3 ]
Kim, Won June [2 ]
Choi, Insung S. [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Chem, Daejeon 34141, South Korea
[2] Changwon Natl Univ, Dept Biol & Chem, Chang Won 51140, South Korea
[3] Korea Res Inst Chem Technol, Data Convergence Drug Res Ctr, Daejeon 34114, South Korea
关键词
Data augmentation; Deep learning; 3D Graph convolutional network; Protein-ligand binding; Rotational variance; REPRESENTATION;
D O I
10.1002/asia.202100789
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This work proposes the data augmentation by molecular rotation, with consideration that the protein-ligand binding events are rotation-variant. As a proof-of-concept, known active (i. e., 1-labeled) ligands to human beta-secretase 1 (BACE-1) are rotated for the generation of 0-labeled data, and the rotation-dependent prediction accuracy of 3D graph convolutional network (3DGCN) is investigated after data augmentation. The data augmentation makes the orientation-recognizing ability of 3DGCN improved significantly in the classification task for BACE-1/ligand binding. Furthermore, the data-augmented 3DGCN has a capability for predicting active ligands from a candidate dataset, via improved performance of orientation recognition, which would be applied to virtual drug screening and discovery.
引用
收藏
页码:2610 / 2613
页数:4
相关论文
共 31 条
[1]   A Simple Representation of Three-Dimensional Molecular Structure [J].
Axen, Seth D. ;
Huang, Xi-Ping ;
Caceres, Elena L. ;
Gendelev, Leo ;
Roth, Bryan L. ;
Keiser, Michael J. .
JOURNAL OF MEDICINAL CHEMISTRY, 2017, 60 (17) :7393-7409
[2]  
Bishop C.M, 2013, NEURAL NETWORKS PATT
[3]   Layer-wise relevance propagation of InteractionNet explains protein-ligand interactions at the atom level [J].
Cho, Hyeoncheol ;
Lee, Eok Kyun ;
Choi, Insung S. .
SCIENTIFIC REPORTS, 2020, 10 (01)
[4]   Enhanced Deep-Learning Prediction of Molecular Properties via Augmentation of Bond Topology [J].
Cho, Hyeoncheol ;
Choi, Insung S. .
CHEMMEDCHEM, 2019, 14 (17) :1604-1609
[5]   Prediction of Organic Reaction Outcomes Using Machine Learning [J].
Coley, Connor W. ;
Barzilay, Regina ;
Jaakkola, Tommi S. ;
Green, William H. ;
Jensen, Klays F. .
ACS CENTRAL SCIENCE, 2017, 3 (05) :434-443
[6]   Improved Chemical Structure-Activity Modeling Through Data Augmentation [J].
Cortes-Ciriano, Isidro ;
Bender, Andreas .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2015, 55 (12) :2682-2692
[7]  
Danel T., 2019, ARXIV PREPRINT ARXIV
[8]   PotentialNet for Molecular Property Prediction [J].
Feinberg, Evan N. ;
Sur, Debnil ;
Wu, Zhenqin ;
Husic, Brooke E. ;
Mai, Huanghao ;
Li, Yang ;
Sun, Saisai ;
Yang, Jianyi ;
Ramsundar, Bharath ;
Pande, Vijay S. .
ACS CENTRAL SCIENCE, 2018, 4 (11) :1520-1530
[9]  
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
[10]  
Guo CA, 2017, PR MACH LEARN RES, V70