Delve into Multiple Sclerosis (MS) lesion exploration: A modified attention U-Net for MS lesion segmentation in Brain MRI*

被引:28
作者
Hashemi, Maryam [1 ]
Akhbari, Mahsa [2 ]
Jutten, Christian [3 ,4 ]
机构
[1] Univ New South Wales, Sydney, NSW, Australia
[2] Islamic Azad Univ, Sci & Res Branch, Tehran, Iran
[3] GIPSA Lab, Grenoble, France
[4] Inst Univ France, Paris, France
关键词
Multiple Sclerosis (MS); Lesion detection; Brain MRI; Segmentation; U-Net; Attention U-Net;
D O I
10.1016/j.compbiomed.2022.105402
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Multiple Sclerosis (MS) is a Central Nervous System (CNS) disease that Magnetic Resonance Imaging (MRI) system can detect and segment its lesions. Artificial Neural Networks (ANNs) recently reached a noticeable performance in finding MS lesions from MRI. U-Net and Attention U-Net are two of the most successful ANNs in the field of MS lesion segmentation. In this work, we proposed a framework to segment MS lesions in FluidAttenuated Inversion Recovery (FLAIR) and T2 MRI images by modified U-Net and modified Attention U-Net. For this purpose, we developed some extra preprocessing on MRI scans, made modifications in the loss function of U-Net and Attention U-Net, and proposed using the union of FLAIR and T2 predictions to reach a better performance. Results show that the union of FLAIR and T2 predicted masks by the modified Attention U-Net reaches the performance of 82.30% in terms of Dice Similarity Coefficient (DSC) in the test dataset, which is a considerable improvement compared to the previous works.
引用
收藏
页数:14
相关论文
共 49 条
[1]   Registration Based Data Augmentation for Multiple Sclerosis Lesion Segmentation [J].
Abolvardi, Ava Assadi ;
Hamey, Len ;
Ho-Shon, Kevin .
2019 DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2019, :408-412
[2]   Automatic and Robust Segmentation of Multiple Sclerosis Lesions with Convolutional Neural Networks [J].
Afzal, H. M. Rehan ;
Luo, Suhuai ;
Ramadan, Saadallah ;
Lechner-Scott, Jeannette ;
Amin, Mohammad Ruhul ;
Li, Jiaming ;
Afzal, M. Kamran .
CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 66 (01) :977-991
[3]   Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions [J].
Akkus, Zeynettin ;
Galimzianova, Alfiia ;
Hoogi, Assaf ;
Rubin, Daniel L. ;
Erickson, Bradley J. .
JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) :449-459
[4]  
Andermatt S., 2019, THESIS U BASEL
[5]  
[Anonymous], LONGITUDINAL MULTIPL
[6]   A Survey on Adversarial Deep Learning Robustness in Medical Image Analysis [J].
Apostolidis, Kyriakos D. ;
Papakostas, George A. .
ELECTRONICS, 2021, 10 (17)
[7]  
Aslani S., ARXIV181102942V4 CSC
[8]   Longitudinal Multiple Sclerosis Lesion Segmentation Using Multi-view Convolutional Neural Networks [J].
Birenbaum, Ariel ;
Greenspan, Hayit .
DEEP LEARNING AND DATA LABELING FOR MEDICAL APPLICATIONS, 2016, 10008 :58-67
[9]   A systematic study of the class imbalance problem in convolutional neural networks [J].
Buda, Mateusz ;
Maki, Atsuto ;
Mazurowski, Maciej A. .
NEURAL NETWORKS, 2018, 106 :249-259
[10]   Longitudinal multiple sclerosis lesion segmentation: Resource and challenge [J].
Carass, Aaron ;
Roy, Snehashis ;
Jog, Amod ;
Cuzzocreo, Jennifer L. ;
Magrath, Elizabeth ;
Gherman, Adrian ;
Button, Julia ;
Nguyen, James ;
Prados, Ferran ;
Sudre, Carole H. ;
Cardoso, Manuel Jorge ;
Cawley, Niamh ;
Ciccarelli, Olga ;
Wheeler-Kingshott, Claudia A. M. ;
Ourselin, Sebastien ;
Catanese, Laurence ;
Deshpande, Hrishikesh ;
Maurel, Pierre ;
Commowick, Olivier ;
Barillot, Christian ;
Tomas-Fernandez, Xavier ;
Warfield, Simon K. ;
Vaidya, Suthirth ;
Chunduru, Abhijith ;
Muthuganapathy, Ramanathan ;
Krishnamurthi, Ganapathy ;
Jesson, Andrew ;
Arbel, Tal ;
Maier, Oskar ;
Handeles, Heinz ;
Iheme, Leonardo O. ;
Unay, Devrim ;
Jain, Saurabh ;
Sima, Diana M. ;
Smeets, Dirk ;
Ghafoorian, Mohsen ;
Platel, Bram ;
Birenbaum, Ariel ;
Greenspan, Hayit ;
Bazin, Pierre-Louis ;
Calabresi, Peter A. ;
Crainiceanu, Ciprian M. ;
Ellingsen, Lotta M. ;
Reich, Daniel S. ;
Prince, Jerry L. ;
Pham, Dzung L. .
NEUROIMAGE, 2017, 148 :77-102