Delve into Multiple Sclerosis (MS) lesion exploration: A modified attention U-Net for MS lesion segmentation in Brain MRI*

被引:24
作者
Hashemi, Maryam [1 ]
Akhbari, Mahsa [2 ]
Jutten, Christian [3 ,4 ]
机构
[1] Univ New South Wales, Sydney, NSW, Australia
[2] Islamic Azad Univ, Sci & Res Branch, Tehran, Iran
[3] GIPSA Lab, Grenoble, France
[4] Inst Univ France, Paris, France
关键词
Multiple Sclerosis (MS); Lesion detection; Brain MRI; Segmentation; U-Net; Attention U-Net;
D O I
10.1016/j.compbiomed.2022.105402
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Multiple Sclerosis (MS) is a Central Nervous System (CNS) disease that Magnetic Resonance Imaging (MRI) system can detect and segment its lesions. Artificial Neural Networks (ANNs) recently reached a noticeable performance in finding MS lesions from MRI. U-Net and Attention U-Net are two of the most successful ANNs in the field of MS lesion segmentation. In this work, we proposed a framework to segment MS lesions in FluidAttenuated Inversion Recovery (FLAIR) and T2 MRI images by modified U-Net and modified Attention U-Net. For this purpose, we developed some extra preprocessing on MRI scans, made modifications in the loss function of U-Net and Attention U-Net, and proposed using the union of FLAIR and T2 predictions to reach a better performance. Results show that the union of FLAIR and T2 predicted masks by the modified Attention U-Net reaches the performance of 82.30% in terms of Dice Similarity Coefficient (DSC) in the test dataset, which is a considerable improvement compared to the previous works.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Registration Based Data Augmentation for Multiple Sclerosis Lesion Segmentation
    Abolvardi, Ava Assadi
    Hamey, Len
    Ho-Shon, Kevin
    [J]. 2019 DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2019, : 408 - 412
  • [2] Automatic and Robust Segmentation of Multiple Sclerosis Lesions with Convolutional Neural Networks
    Afzal, H. M. Rehan
    Luo, Suhuai
    Ramadan, Saadallah
    Lechner-Scott, Jeannette
    Amin, Mohammad Ruhul
    Li, Jiaming
    Afzal, M. Kamran
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 66 (01): : 977 - 991
  • [3] Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions
    Akkus, Zeynettin
    Galimzianova, Alfiia
    Hoogi, Assaf
    Rubin, Daniel L.
    Erickson, Bradley J.
    [J]. JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) : 449 - 459
  • [4] Andermatt S., 2019, THESIS U BASEL
  • [5] [Anonymous], LONGITUDINAL MULTIPL
  • [6] A Survey on Adversarial Deep Learning Robustness in Medical Image Analysis
    Apostolidis, Kyriakos D.
    Papakostas, George A.
    [J]. ELECTRONICS, 2021, 10 (17)
  • [7] Aslani S., ARXIV181102942V4 CSC
  • [8] Longitudinal Multiple Sclerosis Lesion Segmentation Using Multi-view Convolutional Neural Networks
    Birenbaum, Ariel
    Greenspan, Hayit
    [J]. DEEP LEARNING AND DATA LABELING FOR MEDICAL APPLICATIONS, 2016, 10008 : 58 - 67
  • [9] A systematic study of the class imbalance problem in convolutional neural networks
    Buda, Mateusz
    Maki, Atsuto
    Mazurowski, Maciej A.
    [J]. NEURAL NETWORKS, 2018, 106 : 249 - 259
  • [10] Longitudinal multiple sclerosis lesion segmentation: Resource and challenge
    Carass, Aaron
    Roy, Snehashis
    Jog, Amod
    Cuzzocreo, Jennifer L.
    Magrath, Elizabeth
    Gherman, Adrian
    Button, Julia
    Nguyen, James
    Prados, Ferran
    Sudre, Carole H.
    Cardoso, Manuel Jorge
    Cawley, Niamh
    Ciccarelli, Olga
    Wheeler-Kingshott, Claudia A. M.
    Ourselin, Sebastien
    Catanese, Laurence
    Deshpande, Hrishikesh
    Maurel, Pierre
    Commowick, Olivier
    Barillot, Christian
    Tomas-Fernandez, Xavier
    Warfield, Simon K.
    Vaidya, Suthirth
    Chunduru, Abhijith
    Muthuganapathy, Ramanathan
    Krishnamurthi, Ganapathy
    Jesson, Andrew
    Arbel, Tal
    Maier, Oskar
    Handeles, Heinz
    Iheme, Leonardo O.
    Unay, Devrim
    Jain, Saurabh
    Sima, Diana M.
    Smeets, Dirk
    Ghafoorian, Mohsen
    Platel, Bram
    Birenbaum, Ariel
    Greenspan, Hayit
    Bazin, Pierre-Louis
    Calabresi, Peter A.
    Crainiceanu, Ciprian M.
    Ellingsen, Lotta M.
    Reich, Daniel S.
    Prince, Jerry L.
    Pham, Dzung L.
    [J]. NEUROIMAGE, 2017, 148 : 77 - 102