Perturbed Euler top and bifurcation of limit cycles on invariant Casimir surfaces

被引:9
|
作者
Garcia, Isaac A. [1 ]
Hernandez-Bermejo, Benito [2 ]
机构
[1] Univ Lleida, Dept Matemat, Lleida 25001, Spain
[2] Univ Rey Juan Carlos, Dept Fis, Madrid 28933, Spain
关键词
Poisson systems; Casimir invariants; Hamiltonian systems; Perturbation theory; Limit cycles; Poincare-Pontryagin theory; POISSON STRUCTURES; GLOBAL ANALYSIS; SYSTEMS; CLASSIFICATION; EQUATIONS; FAMILY;
D O I
10.1016/j.physd.2010.04.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Analytical perturbations of the Euler top are considered. The perturbations are based on the Poisson structure for such a dynamical system, in such a way that the Casimir invariants of the system remain invariant for the perturbed flow. By means of the Poincare-Pontryagin theory, the existence of limit cycles on the invariant Casimir surfaces for the perturbed system is investigated up to first order of perturbation, providing sharp bounds for their number. Examples are given. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1665 / 1669
页数:5
相关论文
共 50 条
  • [31] Bifurcation of Limit Cycles by Perturbing a Piecewise Linear Hamiltonian System
    Chen, Jiangbin
    Han, Maoan
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (02)
  • [32] BIFURCATION OF LIMIT CYCLES FROM A COMPOUND LOOP WITH FIVE SADDLES
    Sheng, Lijuan
    Han, Maoan
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2019, 9 (06): : 2482 - 2495
  • [33] Bifurcation of discontinuous limit cycles of the Van der Pol equation
    Akhmet, Marat
    Turan, Mehmet
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2014, 95 : 39 - 54
  • [34] Algebraic approximations to bifurcation curves of limit cycles for the Lienard equation
    Giacomini, H
    Neukirch, S
    PHYSICS LETTERS A, 1998, 244 (1-3) : 53 - 58
  • [35] BIFURCATION OF LIMIT-CYCLES FROM CENTERS AND SEPARATRIX CYCLES OF PLANAR ANALYTIC SYSTEMS
    BLOWS, TR
    PERKO, LM
    SIAM REVIEW, 1994, 36 (03) : 341 - 376
  • [36] Coexistence of limit cycles and invariant algebraic curves for a Kukles system
    Chavarriga, J
    Sáez, E
    Szántó, I
    Grau, M
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 59 (05) : 673 - 693
  • [37] LIMIT CYCLES AND INVARIANT PARABOLA IN A KUKLES SYSTEM OF DEGREE THREE
    Liu Zhenhai
    Saez, E.
    Szanto, I.
    ACTA MATHEMATICA SCIENTIA, 2008, 28 (04) : 865 - 869
  • [38] LIMIT CYCLES AND INVARIANT PARABOLA IN A KUKLES SYSTEM OF DEGREE THREE
    刘振海
    E.Sáez I.Szántó
    ActaMathematicaScientia, 2008, (04) : 865 - 869
  • [39] Number of Limit Cycles for Planar Systems with Invariant Algebraic Curves
    Gasull, Armengol
    Giacomini, Hector
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2023, 22 (02)
  • [40] The same distribution of limit cycles in five perturbed cubic Hamiltonian systems
    Liu, ZR
    Yang, ZY
    Jiang, T
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (01): : 243 - 249