Perturbed Euler top and bifurcation of limit cycles on invariant Casimir surfaces

被引:9
|
作者
Garcia, Isaac A. [1 ]
Hernandez-Bermejo, Benito [2 ]
机构
[1] Univ Lleida, Dept Matemat, Lleida 25001, Spain
[2] Univ Rey Juan Carlos, Dept Fis, Madrid 28933, Spain
关键词
Poisson systems; Casimir invariants; Hamiltonian systems; Perturbation theory; Limit cycles; Poincare-Pontryagin theory; POISSON STRUCTURES; GLOBAL ANALYSIS; SYSTEMS; CLASSIFICATION; EQUATIONS; FAMILY;
D O I
10.1016/j.physd.2010.04.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Analytical perturbations of the Euler top are considered. The perturbations are based on the Poisson structure for such a dynamical system, in such a way that the Casimir invariants of the system remain invariant for the perturbed flow. By means of the Poincare-Pontryagin theory, the existence of limit cycles on the invariant Casimir surfaces for the perturbed system is investigated up to first order of perturbation, providing sharp bounds for their number. Examples are given. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1665 / 1669
页数:5
相关论文
共 50 条
  • [21] Bifurcations of limit cycles of perturbed completely integrable systems
    Tudoran, Razvan M.
    Girban, Anania
    NONLINEARITY, 2017, 30 (03) : 1058 - 1088
  • [22] BIFURCATIONS OF LIMIT CYCLES FOR A PERTURBED CUBIC SYSTEM WITH DOUBLE FIGURE EIGHT LOOP
    Zhang, Tonghua
    Zang, Hong
    Tade, Mose O.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (04):
  • [23] Bifurcation of limit cycles from a heteroclinic loop with a cusp
    Sun, Xianbo
    Han, Maoan
    Yang, Junmin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (09) : 2948 - 2965
  • [24] Bifurcation of Limit Cycles from a Polynomial Degenerate Center
    Buica, Adriana
    Gine, Jaume
    Llibre, Jaume
    ADVANCED NONLINEAR STUDIES, 2010, 10 (03) : 597 - 609
  • [25] Bifurcation of limit cycles and center problem for p:q homogeneous weight systems
    Liu, Tao
    Li, Feng
    Liu, Yirong
    Li, Shimin
    Wang, Jing
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 46 : 257 - 273
  • [26] Simultaneous bifurcation of limit cycles from a linear center with extra singular points
    Perez-Gonzalez, S.
    Torregrosa, J.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2014, 138 (01): : 124 - 138
  • [27] Uniqueness of limit cycles bounded by two invariant parabolas
    Saez, Eduardo
    Szanto, Ivan
    APPLICATIONS OF MATHEMATICS, 2012, 57 (05) : 521 - 529
  • [28] Uniqueness of limit cycles bounded by two invariant parabolas
    Eduardo Sáez
    Iván Szántó
    Applications of Mathematics, 2012, 57 : 521 - 529
  • [29] Number and location of limit cycles in a class of perturbed polynomial systems
    Yang C.-X.
    Wang R.-Q.
    Acta Mathematicae Applicatae Sinica, 2004, 20 (1) : 155 - 166
  • [30] Hopf bifurcation of limit cycles by perturbing piecewise integrable systems
    Han, Maoan
    Lu, Wen
    BULLETIN DES SCIENCES MATHEMATIQUES, 2020, 161