Perturbed Euler top and bifurcation of limit cycles on invariant Casimir surfaces

被引:9
|
作者
Garcia, Isaac A. [1 ]
Hernandez-Bermejo, Benito [2 ]
机构
[1] Univ Lleida, Dept Matemat, Lleida 25001, Spain
[2] Univ Rey Juan Carlos, Dept Fis, Madrid 28933, Spain
关键词
Poisson systems; Casimir invariants; Hamiltonian systems; Perturbation theory; Limit cycles; Poincare-Pontryagin theory; POISSON STRUCTURES; GLOBAL ANALYSIS; SYSTEMS; CLASSIFICATION; EQUATIONS; FAMILY;
D O I
10.1016/j.physd.2010.04.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Analytical perturbations of the Euler top are considered. The perturbations are based on the Poisson structure for such a dynamical system, in such a way that the Casimir invariants of the system remain invariant for the perturbed flow. By means of the Poincare-Pontryagin theory, the existence of limit cycles on the invariant Casimir surfaces for the perturbed system is investigated up to first order of perturbation, providing sharp bounds for their number. Examples are given. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1665 / 1669
页数:5
相关论文
共 50 条
  • [1] Perturbed rank 2 Poisson systems and periodic orbits on Casimir invariant manifolds
    Isaac A. García
    Benito Hernández-Bermejo
    Journal of Nonlinear Mathematical Physics, 2020, 27 : 295 - 307
  • [2] Perturbed rank 2 Poisson systems and periodic orbits on Casimir invariant manifolds
    Garcia, Isaac A.
    Hernandez-Bermejo, Benito
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2020, 27 (02) : 295 - 307
  • [3] Third-order bifurcation of limit cycles for a perturbed quartic isochronous centre
    Huang, Bo
    Peng, Linping
    INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, 2023, 13 (03) : 165 - 182
  • [4] Bifurcation of limit cycles in piecewise quadratic differential systems with an invariant straight line
    da Cruz, Leonardo P. C.
    Torregrosa, Joan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 514 (01)
  • [5] Simultaneous Bifurcation of Limit Cycles and Critical Periods
    Oliveira, Regilene D. S.
    Sanchez-Sanchez, Ivan
    Torregrosa, Joan
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (01)
  • [6] Bifurcation of limit cycles in piecewise-smooth systems with intersecting discontinuity surfaces
    Hosham, Hany A.
    NONLINEAR DYNAMICS, 2020, 99 (03) : 2049 - 2063
  • [7] Bifurcation of limit cycles in piecewise-smooth systems with intersecting discontinuity surfaces
    Hany A. Hosham
    Nonlinear Dynamics, 2020, 99 : 2049 - 2063
  • [8] BIFURCATION OF LIMIT CYCLES BY PERTURBING A PERIODIC ANNULUS WITH MULTIPLE CRITICAL POINTS
    Chang, Guifeng
    Han, Maoan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (08):
  • [9] Heteroclinic bifurcation of limit cycles in perturbed cubic Hamiltonian systems by higher-order analysis
    Geng, Wei
    Han, Maoan
    Tian, Yun
    Ke, Ai
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 357 : 412 - 435
  • [10] Limit cycles bifurcating from a perturbed quartic center
    Coll, Bartomeu
    Llibre, Jaume
    Prohens, Rafel
    CHAOS SOLITONS & FRACTALS, 2011, 44 (4-5) : 317 - 334