Moderate Deviations for the Size of the Largest Component in a Super-critical Erdos-Renyi Graph

被引:0
作者
Ameskamp, J. [1 ]
Loewe, M. [1 ]
机构
[1] Univ Munster, Fachbereich Math, D-48149 Munster, Germany
关键词
moderate deviations; random graphs; large deviations; limit theorems;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the size of the largest component of a supercritical Erdos-Renyi graph g(n, p), in the regime where p = lambda/n and lambda > 1. It is well known that the largest component is of order zeta(lambda)n where zeta(lambda) is the extinction probability of a supercritical Calton-Watson process. We prove a Moderate Deviation Principle for the size of the largest component around this value, thus closing the gap between the Central Limit Theorem and a Large Deviation Principle.
引用
收藏
页码:369 / 390
页数:22
相关论文
共 17 条
  • [1] Alon N., 2015, PROBABILISTIC METHOD
  • [2] [Anonymous], 2006, Random Graph Dynamics
  • [3] [Anonymous], 1990, Random Structures Algorithms
  • [4] [Anonymous], 1998, Random graphs
  • [5] On the fluctuations of the giant component
    Barraez, D
    Boucheron, S
    De la Vega, WF
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2000, 9 (04) : 287 - 304
  • [6] Dembo A., 1998, LARGE DEVIATIONS TEC
  • [7] den Hollander F., 2000, FIELDS I MONOGRAPHS, V14
  • [8] Moderate deviations for the overlap parameter in the Hopfield model
    Eichelsbacher, P
    Löwe, M
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2004, 130 (04) : 441 - 472
  • [9] Eichelsbacher P., 2003, ESAIM Probab. Stat., V7, P209, DOI DOI 10.1051/PS:2003005
  • [10] JANSON S, 2000, WIL INT S D, pR5, DOI 10.1002/9781118032718