Constraint partitioning for structure in path-constrained dynamic optimization problems

被引:6
作者
Raha, S
Petzold, LR [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Mech & Environm Engn, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
[3] Univ Minnesota, Dept Comp Sci, Sci Computat Program, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
dynamic optimization; structure; path constraints; constraint partitioning;
D O I
10.1016/S0168-9274(01)00055-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper an algorithm for identifying an index 1 or 2 differential-algebraic subsystem from a possibly higher index path-constrained dynamical system is proposed. The algorithm is useful for diagnostic purposes in model development, and in the formulation of dynamic optimization problems to be solved by shooting or multiple shooting type methods. (C) 2001 IMACS. Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:105 / 126
页数:22
相关论文
共 21 条
  • [1] [Anonymous], ANLMCSTM192
  • [2] Ascher U.M., 1998, COMPUTER METHODS ORD, V61
  • [3] STABILITY OF COMPUTATIONAL METHODS FOR CONSTRAINED DYNAMICS SYSTEMS
    ASCHER, UM
    PETZOLD, LR
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (01) : 95 - 120
  • [4] BAROCAS V, 1996, THESIS U MINNESOAT
  • [5] Brenan K.E., 1995, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations
  • [6] CAMBELL SL, 1995, MECH STRUCTURES MECH, V23, P199
  • [7] ON ALGORITHMS FOR OBTAINING A MAXIMUM TRANSVERSAL
    DUFF, IS
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1981, 7 (03): : 315 - 330
  • [8] FEEHERY WF, 1995, AICHE ANN M MIAM BEA
  • [9] An SQP method for the optimal control of large-scale dynamical systems
    Gill, PE
    Jay, LO
    Leonard, MW
    Petzold, LR
    Sharma, V
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 120 (1-2) : 197 - 213
  • [10] GILL PE, 1997, USERS GUIDE SNOPT 5