A stable, meshfree, nodal integration method for nearly incompressible solids

被引:17
作者
Elmer, William [1 ]
Chen, J. S. [2 ]
Puso, Mike [3 ]
Taciroglu, Ertugrul [2 ]
机构
[1] Lawrence Livermore Natl Lab, Def Syst Anal Grp, Livermore, CA 94550 USA
[2] Univ Calif Los Angeles, Civil & Environm Engn Dept, Los Angeles, CA 90095 USA
[3] Lawrence Livermore Natl Lab, Methods Dev Grp, Livermore, CA 94550 USA
基金
美国国家科学基金会;
关键词
Pressure modes; Nodal integration; Incompressibility; PARTICLE METHODS; FINITE-ELEMENT;
D O I
10.1016/j.finel.2011.11.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An improved nodal integration method for nearly incompressible materials is proposed. Although nodal integration methods can avoid displacement type locking with nearly incompressible material, they often encounter pressure oscillations. A mixed approach to nodal integration is exploited to avoid the oscillation. The method is applied to nodal integration using meshless shape functions and appears to work well in simple two dimensional benchmark tests. The method currently relies on a structured discretization but generalizations are proposed as the basis for future work. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:81 / 85
页数:5
相关论文
共 21 条
[1]   Nodal integration of the element-free Galerkin method [J].
Beissel, S ;
Belytschko, T .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1996, 139 (1-4) :49-74
[2]   Stability analysis of particle methods with corrected derivatives [J].
Belytschko, T ;
Xiao, SP .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 43 (3-5) :329-350
[3]  
Chen J.S., 2006, LECT NOTES COMPUTATI, V57, P57, DOI [10.1007/978-3-540-46222-44, DOI 10.1007/978-3-540-46222-44]
[4]   An improved reproducing kernel particle method for nearly incompressible finite elasticity [J].
Chen, JS ;
Yoon, S ;
Wang, HP ;
Liu, WK .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 181 (1-3) :117-145
[5]   Non-linear version of stabilized conforming nodal integration for Galerkin mesh-free methods [J].
Chen, JS ;
Yoon, SP ;
Wu, CT .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2002, 53 (12) :2587-2615
[6]  
Chen JS, 2001, INT J NUMER METH ENG, V50, P435, DOI 10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO
[7]  
2-A
[8]  
DOLBOW J, 1999, INT J NUMER METHODS, V46
[9]  
DUAN Q, 2009, INT J NUMER METHODS, V77
[10]  
DUAN Q, 2008, MESHFREE METHODS PAR, V2, P47