Lag synchronization of hyperchaotic complex nonlinear systems

被引:92
作者
Mahmoud, Gamal M. [1 ]
Mahmoud, Emad E. [2 ]
机构
[1] Assiut Univ, Fac Sci, Dept Math, Assiut 71516, Egypt
[2] Sohag Univ, Fac Sci, Dept Math, Sohag, Egypt
关键词
Complex; Hyperchaotic system; Lag synchronization; Autonomous system; Non-autonomous system; Complex control function; Complex Lyapunov function; CHAOS SYNCHRONIZATION; OSCILLATORS; CHEN;
D O I
10.1007/s11071-011-0091-6
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, we study the lag synchronization (LS) of n-dimensional hyperchaotic complex nonlinear systems. The idea of the nonlinear control technique based on the complex Lyapunov function with lag in time is used to propose a scheme to investigate LS of hyperchaotic attractors of these systems. Both complex Lyapunov and control functions are introduced. For illustration, the scheme is applied to two hyperchaotic complex Lorenz systems. The real and complex control functions are derived analytically to achieve LS and to show that the complex error dynamical systems are globally stable. Numerical results are calculated to test the validity of the analytical expressions of control functions to achieve LS of two identical hyperchaotic attractors.
引用
收藏
页码:1613 / 1622
页数:10
相关论文
共 33 条
[1]   Breaking projective chaos synchronization secure communication using filtering and generalized synchronization [J].
Alvarez, G ;
Li, SJ ;
Montoya, F ;
Pastor, G ;
Romera, M .
CHAOS SOLITONS & FRACTALS, 2005, 24 (03) :775-783
[2]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[3]   Projective and lag synchronization of a novel hyperchaotic system via impulsive control [J].
Chen, Juan ;
Liu, Hui ;
Lu, Jun-an ;
Zhang, Qunjiao .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (04) :2033-2040
[4]  
CHENG Z, 2009, ADV NEURAL NETWORKS
[5]  
Dehghani M., 2006, SICE ICASE INT JOINT, P2252, DOI DOI 10.1109/SICE.2006.315812
[6]   On the chaos synchronization phenomena [J].
Femat, R ;
Solís-Perales, G .
PHYSICS LETTERS A, 1999, 262 (01) :50-60
[7]   Synchronization of chaotic systems with different order -: art. no. 036226 [J].
Femat, R ;
Solís-Perales, G .
PHYSICAL REVIEW E, 2002, 65 (03) :1-036226
[8]   Synchronization of chaotic systems via nonlinear control [J].
Huang, LL ;
Feng, RP ;
Wang, M .
PHYSICS LETTERS A, 2004, 320 (04) :271-275
[9]   On delay-dependent stability conditions for time-varying systems [J].
Kharitonov, VL ;
Melchor-Aguilar, D .
SYSTEMS & CONTROL LETTERS, 2002, 46 (03) :173-180
[10]   Lag synchronization of hyperchaos with application to secure communications [J].
Li, CD ;
Liao, XF ;
Wong, KW .
CHAOS SOLITONS & FRACTALS, 2005, 23 (01) :183-193