A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks

被引:300
作者
Wu, SQ [1 ]
Er, MJ
Gao, Y
机构
[1] Nanyang Technol Univ, Ctr Signal Proc, Innovat Ctr, Singapore 637722, Singapore
[2] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
关键词
ellipsoidal basis function (EBF); function approximation; fuzzy rule extraction; on-line self-organizing learning; Takagi-Sugeno-Kang (TSK) fuzzy reasoning;
D O I
10.1109/91.940970
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a fast approach for automatically generating fuzzy rules from sample patterns using generalized dynamic fuzzy neural networks (GD-FNNs) is presented. The GD-FNN is built based on ellipsoidal basis function and functionally is equivalent to a Takagi-Sugeno-Kang fuzzy system. The salient characteristics of the GD-FNN are: 1) structure identification and parameters estimation are performed automatically and simultaneously without partitioning input space and selecting initial parameters a priori; 2) fuzzy rules can be recruited or deleted dynamically; 3) fuzzy rules can be generated quickly without resorting to the backpropagation (BP) iteration learning, a common approach adopted by many existing methods. The GD-FNN is employed in a wide range of applications ranging from static function approximation and nonlinear system identification to time-varying drug delivery system and multilink robot control. Simulation results demonstrate that a compact and high-performance fuzzy rule-base can be constructed. Comprehensive comparisons with other latest approaches show that the proposed approach is superior in terms of learning efficiency and performance.
引用
收藏
页码:578 / 594
页数:17
相关论文
共 24 条
[1]   Fuzzy function approximators with ellipsoidal regions [J].
Abe, S .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 1999, 29 (05) :654-661
[2]  
[Anonymous], INT J APPROXIMATE RE
[3]   Simplification of fuzzy-neural systems using similarity analysis [J].
Chao, CT ;
Chen, YJ ;
Teng, CC .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 1996, 26 (02) :344-354
[4]   ORTHOGONAL LEAST-SQUARES LEARNING ALGORITHM FOR RADIAL BASIS FUNCTION NETWORKS [J].
CHEN, S ;
COWAN, CFN ;
GRANT, PM .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1991, 2 (02) :302-309
[5]   Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction [J].
Cho, KB ;
Wang, BH .
FUZZY SETS AND SYSTEMS, 1996, 83 (03) :325-339
[6]   Fuzzy function approximation with ellipsoidal rules [J].
Dickerson, JA ;
Kosko, B .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 1996, 26 (04) :542-560
[7]   Induction of fuzzy rules and membership functions from training examples [J].
Hong, TP ;
Lee, CY .
FUZZY SETS AND SYSTEMS, 1996, 84 (01) :33-47
[8]   ANFIS - ADAPTIVE-NETWORK-BASED FUZZY INFERENCE SYSTEM [J].
JANG, JSR .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1993, 23 (03) :665-685
[9]   An on-line self-constructing neural fuzzy inference network and its applications [J].
Juang, CF ;
Lin, CT .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1998, 6 (01) :12-32
[10]   FUZZY-LOGIC IN CONTROL-SYSTEMS - FUZZY-LOGIC CONTROLLER .1. [J].
LEE, CC .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1990, 20 (02) :404-418