Absorption Spectra of Azobenzenes Simulated With Time-Dependent Density Functional Theory

被引:40
作者
Jacquemin, Denis [2 ]
Preat, Julien [2 ]
Perpete, Eric A. [2 ]
Vercauteren, Daniel P. [2 ]
Andre, Jean-Marie [2 ,3 ]
Ciofini, Ilaria [1 ]
Adamo, Carlo [1 ]
机构
[1] ENSCP Chim Paris Tech, CNRS, UMR 7575, Lab Electrochim Chim Interfaces & Modelisat Energ, F-75321 Paris 05, France
[2] Univ Namur, Unite Chim Phys Theor & Struct, B-5000 Namur, Belgium
[3] Royal Acad Belgium, B-1000 Brussels, Belgium
关键词
azobenzene; absorption spectra; TD-DFT; PCM; tautomers; isomers; AZO-HYDRAZONE TAUTOMERISM; AB-INITIO; ELECTRONIC-SPECTRA; EXCITED-STATES; TD-DFT; UV/VIS SPECTRA; MOLECULAR SHUTTLE; TRANS-AZOBENZENE; VISIBLE SPECTRA; RANGE;
D O I
10.1002/qua.22910
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Using time-dependent density functional theory and the polarizable continuum model, we have simulated the absorption spectra of an extended series of azobenzene dyes. First, we have determined a theoretical level optimal for this important class of dyes, and it turned out that a C-PCM-CAM-B3LYP/6-311+G(d,p)//C-PCM-B3LYP/6-311G(d,p) approach represents an effective compromise between chemical accuracy and computational cost. In a second stage, we have compared the theoretical and experimental transition energies for 46 n -> pi* and 141 pi -> pi* excitations. For the full set, that spans over a 302-565 nm domain, we obtained a mean absolute deviation of 13 nm (0.10 eV) and a linear correlation coefficient of 0.95, illustrating the accuracy of our approach, though some significant outliers pertained. In a last step, the impact of several modifications, that is, trans/cis isomerization, variation of the acidity of the medium and azo/hydrazo tautomerism have been modeled with two functionals. (C) 2011 Wiley Periodicals, Inc. Int J Quantum Chem 111: 4224-4240, 2011
引用
收藏
页码:4224 / 4240
页数:17
相关论文
共 50 条
[21]   Calculation of Electronic-Excited-State Absorption Spectra of Water Clusters Using Time-Dependent Density Functional Theory [J].
Huang, L. ;
Lambrakos, S. G. ;
Shabaev, A. ;
Massa, L. .
ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XXI, 2015, 9472
[22]   Characterization of the UV-Visible absorption spectra of manganese(III) porphyrins with time-dependent density functional theory calculations [J].
Fodor, Melinda A. ;
Szabo, Peter ;
Lendvay, Gyorgy ;
Horvath, Otto .
ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2022, 236 (01) :27-51
[23]   UV/Visible spectra of natural polyphenols: A time-dependent density functional theory study [J].
Anouar, El Hassane ;
Gierschner, Johannes ;
Duroux, Jean-Luc ;
Trouillas, Patrick .
FOOD CHEMISTRY, 2012, 131 (01) :79-89
[24]   Electron dynamics with real-time time-dependent density functional theory [J].
Provorse, Makenzie R. ;
Isborn, Christine M. .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2016, 116 (10) :739-749
[25]   Solitons in Nuclear Time-Dependent Density Functional Theory [J].
Iwata, Yoritaka .
FRONTIERS IN PHYSICS, 2020, 8
[26]   Charge transfer in time-dependent density functional theory [J].
Maitra, Neepa T. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (42)
[27]   Progress in Time-Dependent Density-Functional Theory [J].
Casida, M. E. ;
Huix-Rotllant, M. .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 63, 2012, 63 :287-323
[28]   Going beyond the vertical approximation with time-dependent density functional theory [J].
Santoro, Fabrizio ;
Jacquemin, Denis .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2016, 6 (05) :460-486
[29]   Photoabsorption spectra from adiabatically exact time-dependent density-functional theory in real time [J].
Thiele, Mark ;
Kuemmel, Stephan .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (22) :4631-4639
[30]   Time-Dependent Density Functional Theory Study of the Electronic Excitation Spectra of Chlorophyllide a and Pheophorbide a in Solvents [J].
Qu, Zheng-wang ;
Zhu, Hui ;
May, Volkhard ;
Schinke, Reinhard .
JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (14) :4817-4825