Singular limits in Liouville-type equations

被引:181
作者
del Pino, M
Kowalczyk, M
Musso, M
机构
[1] Univ Chile, Dept Ingn Matemat, Santiago, Chile
[2] Univ Chile, Ctr Modelamiento Matemat, Santiago, Chile
[3] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
[4] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
[5] Pontificia Univ Catolica Chile, Dept Matemat, Macul 4860, Chile
关键词
D O I
10.1007/s00526-004-0314-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the boundary value problem Delta u + epsilon(2) k( x) e(u) = 0 in a bounded, smooth domain Omega R-2 with homogeneous Dirichlet boundary conditions. Here epsilon > 0, k( x) is a non-negative, not identically zero function. We. find conditions under which there exists a solution u(epsilon) which blows up at exactly m points as epsilon -> 0 and satisfies epsilon(2) integral Omega ke u epsilon -> 8m pi. In particular, we. and that if k epsilon C2((Omega) over bar), inf(Omega) k > 0 and is not simply connected then such a solution exists for any given m >= 1.
引用
收藏
页码:47 / 81
页数:35
相关论文
共 35 条
[1]   ON A VARIATIONAL PROBLEM WITH LACK OF COMPACTNESS - THE TOPOLOGICAL EFFECT OF THE CRITICAL-POINTS AT INFINITY [J].
BAHRI, A ;
LI, YY ;
REY, O .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1995, 3 (01) :67-93
[2]  
Baraket S, 1998, CALC VAR PARTIAL DIF, V6, P1
[3]   The Liouville equation with singular data: A concentration-compactness principle via a local representation formula [J].
Bartolucci, D ;
Tarantello, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 185 (01) :161-180
[4]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[5]   UNIFORM ESTIMATES AND BLOW UP BEHAVIOR FOR SOLUTIONS OF -DELTA-U = V(X)EU IN 2 DIMENSIONS [J].
BREZIS, H ;
MERLE, F .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (8-9) :1223-1253
[6]   VORTEX CONDENSATION IN THE CHERN-SIMONS HIGGS-MODEL - AN EXISTENCE THEOREM [J].
CAFFARELLI, LA ;
YANG, YS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 168 (02) :321-336
[7]   A SPECIAL-CLASS OF STATIONARY FLOWS FOR 2-DIMENSIONAL EULER EQUATIONS - A STATISTICAL-MECHANICS DESCRIPTION .2. [J].
CAGLIOTI, E ;
LIONS, PL ;
MARCHIORO, C ;
PULVIRENTI, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 174 (02) :229-260
[8]   The existence of non-topological multivortex solutions in the relativistic self-dual Chern-Simons theory [J].
Chae, D ;
Imanuvilov, OY .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 215 (01) :119-142
[9]  
Chandrasekhar S., 1957, INTRO STUDY STELLAR
[10]   THE SCALAR CURVATURE EQUATION ON 2-SPHERE AND 3-SPHERE [J].
CHANG, SYA ;
GURSKY, MJ ;
YANG, PC .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1993, 1 (02) :205-229