Preparation of carbon coated Fe3O4 nanoparticles for magnetic separation of uranium

被引:25
作者
Zhang, Xiaofei [1 ,2 ]
Wang, Jun [2 ,3 ]
机构
[1] Chengde Petr Coll, Dept Chem Engn, Chengde 067000, Peoples R China
[2] Harbin Engn Univ, Coll Mat Sci & Chem Engn, Harbin 150001, Heilongjiang, Peoples R China
[3] Harbin Engn Univ, Minist Educ, Key Lab Superlight Mat & Surface Technol, Harbin 150001, Heilongjiang, Peoples R China
关键词
Uranium; Carbon coated Fe3O4 nanoparticles; Adsorption; Desorption; CORE-SHELL MICROSPHERES; AQUEOUS-SOLUTION; SELECTIVE ENRICHMENT; OXIDE NANOPARTICLES; REMOVAL; ADSORPTION; SORPTION; PHOSPHOPEPTIDES; GROUNDWATER; REDUCTION;
D O I
10.1016/j.solidstatesciences.2017.11.003
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Uranium(VI) was removed from aqueous solutions using carbon coated Fe3O4 nanoparticles (Fe3O4@C). Batch experiments were conducted to study the effects of initial pH, shaking time and temperature on uranium sorption efficiency. It was found that the maximum adsorption capacity of the Fe3O4@C toward uranium(VI) was similar to 120.20 mg g(-1) when the initial uranium(VI) concentration was 100 mg L-1, displaying a high efficiency for the removal of uranium(VI) ions. Kinetics of the uranium(VI) removal is found to follow pseudo-second-order rate equation. In addition, the uranium(VI)-loaded Fe3O4@C nanoparticles can be recovered easily from aqueous solution by magnetic separation and regenerated by acid treatment. Present study suggested that magnetic Fe3O4@C composite particles can be used as an effective and recyclable adsorbent for the removal of uranium(VI) from aqueous solutions. (C) 2017 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:14 / 20
页数:7
相关论文
共 50 条
[1]   Efficient removal of Cr(VI) from aqueous solution with Fe@Fe2O3 core-shell nanowires [J].
Ai, Zhihui ;
Cheng, Ying ;
Zhang, Lizhi ;
Qiu, Jianrong .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (18) :6955-6960
[2]   Effects of uranium on the metabolism of zebrafish, Danio rerio [J].
Augustine, Starrlight ;
Gagnaire, Beatrice ;
Adam-Guillermin, Christelle ;
Kooijman, Sebastiaan A. L. M. .
AQUATIC TOXICOLOGY, 2012, 118 :9-26
[3]   Fluoride removal from water by adsorption-A review [J].
Bhatnagar, Amit ;
Kumar, Eva ;
Sillanpaa, Mika .
CHEMICAL ENGINEERING JOURNAL, 2011, 171 (03) :811-840
[4]   Surface oxides on carbon and their analysis: a critical assessment [J].
Boehm, HP .
CARBON, 2002, 40 (02) :145-149
[5]   Continuous synthesis of carbon-encapsulated magnetic nanoparticles with a minimum production of amorphous carbon [J].
Bystrzejewski, M. ;
Karoly, Z. ;
Szepvolgyi, J. ;
Kaszuwara, W. ;
Huczko, A. ;
Lange, H. .
CARBON, 2009, 47 (08) :2040-2048
[6]   Magnesium oxide nanoparticles: Preparation, characterization, and uranium sorption properties [J].
Camtakan, Zeyneb ;
Erenturk, Sema ;
Yusan, Sabriye .
ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2012, 31 (04) :536-543
[7]   Simple approach to carboxyl-rich materials through low-temperature heat treatment of hydrothermal carbon in air [J].
Chen, Zhen ;
Ma, Lijian ;
Li, Shuqiong ;
Geng, Junxia ;
Song, Qiang ;
Liu, Jun ;
Wang, Chunli ;
Wang, Hang ;
Li, Juan ;
Qin, Zhi ;
Li, Shoujian .
APPLIED SURFACE SCIENCE, 2011, 257 (20) :8686-8691
[8]   Removal of malachite green (MG) from aqueous solutions by native and heat-treated anaerobic granular sludge [J].
Cheng, Wen ;
Wang, Shu-Guang ;
Lu, Lei ;
Gong, Wen-Xin ;
Liu, Xian-Wei ;
Gao, Bao-Yu ;
Zhang, Hua-Yong .
BIOCHEMICAL ENGINEERING JOURNAL, 2008, 39 (03) :538-546
[9]   Uranium(VI) sorption complexes on montmorillonite as a function of solution chemistry [J].
Chisholm-Brause, CJ ;
Berg, JM ;
Matzner, RA ;
Morris, DE .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2001, 233 (01) :38-49
[10]   Water-Soluble Magnetic-Functionalized Reduced Graphene Oxide Sheets: In situ Synthesis and Magnetic Resonance Imaging Applications [J].
Cong, Huai-Ping ;
He, Jia-Jun ;
Lu, Yang ;
Yu, Shu-Hong .
SMALL, 2010, 6 (02) :169-173