Hamiltonian connectivity of 2-tree-generated networks

被引:7
作者
Cheng, Eddie [1 ]
Lipman, Marc J. [2 ]
Liptak, Laszlo [1 ]
Stiebel, David [3 ]
机构
[1] Oakland Univ, Dept Math & Stat, Rochester, MI 48309 USA
[2] Indiana Univ Purdue Univ, Sch Arts & Sci, Ft Wayne, IN 46805 USA
[3] MIT, Cambridge, MA 02139 USA
关键词
interconnection network; Cayley graph; alternating group graph; Hamiltonian connectivity;
D O I
10.1016/j.mcm.2007.11.007
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we consider a class of Cayley graphs that are generated by certain 3-cycles on the alternating group An. These graphs are generalizations of the alternating group graph AG(n). We look at the case when the 3-cycles form a "tree- like structure", and analyze the Hamiltonian connectivity of such graphs. We prove that even with 2n - 7 vertices deleted, the remaining graph is Hamiltonian connected, i.e. there is a Hamiltonian path between every pair of vertices. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:787 / 804
页数:18
相关论文
共 17 条
[1]  
Akers S. B., 1987, Proceedings of the 1987 International Conference on Parallel Processing, P393
[2]   Hyper hamiltonian laceability of Cayley graphs generated by transpositions [J].
Araki, Toru .
NETWORKS, 2006, 48 (03) :121-124
[3]  
Beineke L.W., 1969, J COMB THEORY, V6, P200
[4]   PROPERTIES AND CHARACTERIZATIONS OF K-TREES [J].
BEINEKE, LW ;
PIPPERT, RE .
MATHEMATIKA, 1971, 18 (35) :141-&
[5]  
Cheng E, 2001, ARS COMBINATORIA, V59, P107
[6]   THE (N,K)-STAR GRAPH - A GENERALIZED STAR GRAPH [J].
CHIANG, WK ;
CHEN, RJ .
INFORMATION PROCESSING LETTERS, 1995, 56 (05) :259-264
[7]   ARRANGEMENT GRAPHS - A CLASS OF GENERALIZED STAR GRAPHS [J].
DAY, K ;
TRIPATHI, A .
INFORMATION PROCESSING LETTERS, 1992, 42 (05) :235-241
[8]   Fault-free Hamiltonian cycles in faulty arrangement graphs [J].
Hsieh, SY ;
Chen, GH ;
Ho, CW .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1999, 10 (03) :223-237
[9]   Fault hamiltonicity of augmented cubes [J].
Hsu, HC ;
Chiang, LC ;
Tan, JJM ;
Hsu, LH .
PARALLEL COMPUTING, 2005, 31 (01) :131-145
[10]   Fault hamiltonicity and fault hamiltonian connectivity of the arrangement graphs [J].
Hsu, HC ;
Li, TK ;
Tan, JJM ;
Hsu, LH .
IEEE TRANSACTIONS ON COMPUTERS, 2004, 53 (01) :39-53