Thermoelectric properties of Zn5Sb4In2-δ (δ=0.15)

被引:6
作者
Wu, Y. [1 ]
Litvinchuk, A. P. [2 ,3 ]
Toberer, E. S. [4 ]
Snyder, G. J. [5 ]
Newman, N. [6 ]
Fischer, A. [7 ]
Scheidt, E. -W. [7 ]
Scherer, W. [7 ]
Haeussermann, U. [1 ]
机构
[1] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA
[2] Univ Houston, Dept Phys, Houston, TX 77204 USA
[3] Univ Houston, TCSUH, Houston, TX 77204 USA
[4] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA
[5] CALTECH, Pasadena, CA 91125 USA
[6] Arizona State Univ, Sch Mat, Tempe, AZ 85287 USA
[7] Univ Augsburg, Dept Phys, D-86159 Augsburg, Germany
基金
美国国家科学基金会;
关键词
SEMICONDUCTOR; ANTIMONIDES; COMPOUND; ZN4SB3; ZINC;
D O I
10.1063/1.4729566
中图分类号
O59 [应用物理学];
学科分类号
摘要
The polymorphic intermetallic compound Zn5Sb4In2-delta (delta = 0.15(3)) shows promising thermoelectric properties at low temperatures, approaching a figure of merit ZT of 0.3 at 300 K. However, thermopower and electrical resistivity changes discontinuously at around 220 K. Measurement of the specific heat locates the previously unknown temperature of the order-disorder phase transition at around 180K. Investigation of the charge carrier concentration and mobility by Hall measurements and infrared reflection spectroscopy indicate a mixed conduction behavior and the activation of charge carriers at temperatures above 220 K. Zn5Sb4In2-delta has a low thermal stability, and at temperatures above 470K samples decompose into a mixture of Zn, InSb, and Zn4Sb3. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729566]
引用
收藏
页数:7
相关论文
共 22 条
[1]   Effect of disorder on the thermal transport and elastic properties in thermoelectric Zn4Sb3 [J].
Bhattacharya, S. ;
Hermann, R. P. ;
Keppens, V. ;
Tritt, T. M. ;
Snyder, G. J. .
PHYSICAL REVIEW B, 2006, 74 (13)
[2]   Solution Synthesis of a New Thermoelectric Zn1-xSb Nanophase and Its Structure Determination Using Automated Electron Diffraction Tomography [J].
Birkel, Christina S. ;
Mugnaioli, Enrico ;
Gorelik, Tatiana ;
Kolb, Ute ;
Panthoefer, Martin ;
Tremel, Wolfgang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (28) :9881-9889
[3]   Doping of p-type ZnSb: Single parabolic band model and impurity band conduction [J].
Bottger, P. H. Michael ;
Pomrehn, Gregory S. ;
Snyder, G. Jeffrey ;
Finstad, Terje G. .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2011, 208 (12) :2753-2759
[4]   Preparation and thermoelectric properties of semiconducting Zn4Sb3 [J].
Caillat, T ;
Fleurial, JP ;
Borshchevsky, A .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1997, 58 (07) :1119-1125
[5]  
Fox M., 2010, OPTICAL PROPERTIES S, P396
[6]   Estimation of the thermal band gap of a semiconductor from Seebeck measurements [J].
Goldsmid, HJ ;
Sharp, JW .
JOURNAL OF ELECTRONIC MATERIALS, 1999, 28 (07) :869-872
[7]   Electron-poor antimonides: complex framework structures with narrow band gaps and low thermal conductivity [J].
Haeussermann, Ulrich ;
Mikhaylushkin, Arkady S. .
DALTON TRANSACTIONS, 2010, 39 (04) :1036-1045
[8]   Fulfilling thermoelectric promises: β-Zn4Sb3 from materials research to power generation [J].
Iversen, Bo Brummerstedt .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (48) :10778-10787
[9]   First-principles study of Zn-Sb thermoelectrics [J].
Kim, SG ;
Mazin, II ;
Singh, DJ .
PHYSICAL REVIEW B, 1998, 57 (11) :6199-6203
[10]   Optical and electronic properties of thermoelectric Zn4Sb3 across the low-temperature phase transitions [J].
Litvinchuk, A. P. ;
Lorenz, B. ;
Chen, Feng ;
Nylen, J. ;
Haussermann, U. ;
Lidin, Sven ;
Wang, Limin ;
Guloy, Arnold M. .
APPLIED PHYSICS LETTERS, 2007, 90 (18)