Automatic Segmentation of Ventricular Cerebrospinal Fluid from Ischemic Stroke CT Images

被引:18
|
作者
Poh, L. E. [1 ]
Gupta, V. [1 ]
Johnson, A. [1 ]
Kazmierski, R. [2 ]
Nowinski, W. L. [1 ]
机构
[1] Agcy Sci Technol & Res, Biomed Imaging Lab, Singapore 138671, Singapore
[2] Poznan Univ Med Sci, Dept Neurol & Cerebrovasc Disorders, L Bierkowski Hosp, Poznan, Poland
关键词
CT; Ventriclular system; Segmentation; Stroke; Registration; SYSTEM;
D O I
10.1007/s12021-011-9135-9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Accurate segmentation of ventricular cerebrospinal fluid (CSF) regions in stroke CT images is important in assessing stroke patients. Manual segmentation is subjective, time consuming and error prone. There are currently no methods dedicated to extracting ventricular CSF regions in stroke CT images. 102 ischemic stroke CT scans (slice thickness between 3 and 6 mm, voxel size in the axial plane between 0.390 and 0.498 mm) were acquired. An automated template-based algorithm is proposed to extract ventricular CSF regions which accounts for the presence of ischemic infarct regions, image noise, and variations in orientation. First, template VT2 is registered to the scan using landmark-based piecewise linear scaling and then template VT1 is used to further refine the registration by partial segmentation of the fourth ventricle. A region of interest (ROI) is found using the registered VT2. Automated thresholding is then applied to the ROI and the artifacts are removed in the final phase. Sensitivity, dice similarity coefficient, volume error, conformity and sensibility of segmentation results were 0.74 +/- 0.12, 0.8 +/- 0.09, 0.16 +/- 0.11, 0.45 +/- 0.39, 0.88 +/- 0.09, respectively. The processing time for a 512 x 512 x 30 CT scan takes less than 30 s on a 2.49 GHz dual core processor PC with 4 GB RAM. Experiments with clinical stroke CT scans showed that the proposed algorithm can generate acceptable results in the presence of noise, size variations and orientation differences of ventricular systems and in the presence of ischemic infarcts.
引用
收藏
页码:159 / 172
页数:14
相关论文
共 50 条
  • [31] Automatic Labeling and Segmentation of Vertebrae in CT Images
    Rasoulian, Abtin
    Rohlin, Robert N.
    Abolmaesumi, Purang
    MEDICAL IMAGING 2014: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2014, 9036
  • [32] AUTOMATIC SEGMENTATION OF LIVER STRUCTURE IN CT IMAGES
    BAE, KT
    GIGER, ML
    CHEN, CT
    KAHN, CE
    MEDICAL PHYSICS, 1993, 20 (01) : 71 - 78
  • [33] AN AUTOMATIC SEGMENTATION ALGORITHM FOR CT PROSTATE IMAGES
    Liu, B.
    Li, F.
    Yan, J.
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2016, 118 : 111 - 111
  • [34] AUTOMATIC SEGMENTATION OF PERINATAL ARTERIAL ISCHEMIC STROKE VOLUME
    van der Aa, N. E.
    Isgum, I.
    Groenendaal, F.
    Viergever, M. A.
    de Vries, L. S.
    Benders, M. J. N. L.
    PEDIATRIC RESEARCH, 2011, 70 : 155 - 155
  • [35] Automatic ischemic stroke segmentation using various techniques
    Usinskas, A
    Pranckeviciene, E
    Wittenberg, T
    Hastreiter, P
    Tomandl, BF
    NEURAL NETWORKS AND SOFT COMPUTING, 2003, : 498 - 503
  • [36] Automatic Segmentation of Perinatal Arterial Ischemic Stroke Volume
    N E van der Aa
    I Isgum
    F Groenendaal
    M A Viergever
    L S de Vries
    M J N L Benders
    Pediatric Research, 2011, 70 : 155 - 155
  • [37] Survey on Automatic Liver Segmentation Techniques from Abdominal CT Images
    Vanmore, Swapnil V.
    Chougule, Sangeeta R.
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICCS), 2019, : 1030 - 1035
  • [38] Lung Parenchyma Segmentation from CT Images with a Fully Automatic Method
    Moghaddam, Reza Mousavi
    Aghazadeh, Nasser
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (05) : 14235 - 14257
  • [39] Lung Parenchyma Segmentation from CT Images with a Fully Automatic Method
    Reza Mousavi Moghaddam
    Nasser Aghazadeh
    Multimedia Tools and Applications, 2024, 83 : 14235 - 14257
  • [40] Automatic segmentation of cerebral ischemic lesions from diffusion tensor MR images
    Li, W
    Tian, J
    Dai, JP
    MEDICAL IMAGING 2004: IMAGE PROCESSING, PTS 1-3, 2004, 5370 : 1640 - 1649