Guarding Polyominoes

被引:0
作者
Biedl, Therese [1 ]
Irfan, Mohammad T. [1 ]
Iwerks, Justin [1 ]
Kim, Joondong [1 ]
Mitchell, Joseph S. B. [1 ]
机构
[1] Univ Waterloo, Waterloo, ON N2L 3G1, Canada
来源
COMPUTATIONAL GEOMETRY (SCG 11) | 2011年
关键词
art gallery problem; visibility problem; polyomino; computational geometry; NP-hardness; ART-GALLERY PROBLEMS; POLYGONS; ALGORITHMS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We explore the art gallery problem for the special case that the domain (gallery) P is an m-polyomino, a polyform whose cells are in unit squares. We study the combinatorics of guarding polyominoes in terms of the parameter in, in contrast with the traditional parameter n, the number of vertices of P; in particular, we show that left perpendicularm+1/3right perpendicular point guards are always sufficient and sometimes necessary to cover an m-polyomino. When m <= 4, the point guard sufficiency condition yields a strictly lower guard number than left perpendicularn/4right perpendicular, given by the art gallery theorem for orthogonal polygons. When pixels behave themselves like guards (pixel guards), we prove that left perpendicular3m/11right perpendicular + 1 guards are sufficient and sometimes necessary to cover an m-polyomino. We also study the algorithmic complexity of computing optimal guard sets for polyominoes. We prove that determining the guard number of a given m-polyomino is NP-hard. We provide polynomial-time algorithms to solve exactly some special cases in which the polyornino is "thin".
引用
收藏
页码:387 / 396
页数:10
相关论文
共 23 条
[1]   Fixed parameter algorithms for DOMINATING SET and related problems on planar graphs [J].
Alber, J ;
Bodlaender, HL ;
Fernau, H ;
Kloks, T ;
Niedermeier, R .
ALGORITHMICA, 2002, 33 (04) :461-493
[2]   LOCATING GUARDS FOR VISIBILITY COVERAGE OF POLYGONS [J].
Amit, Yoav ;
Mitchell, Joseph S. B. ;
Packer, Eli .
INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2010, 20 (05) :601-630
[3]   A constant-factor approximation algorithm for optimal 1.5D terrain guarding [J].
Ben-Moshe, Boaz ;
Katz, Matthew J. ;
Mitchell, Joseph S. B. .
SIAM JOURNAL ON COMPUTING, 2007, 36 (06) :1631-1647
[4]  
BIEDL T, 2011, GUARDING POLYOMINOES
[5]   AN EFFICIENT ALGORITHM FOR GUARD PLACEMENT IN POLYGONS WITH HOLES [J].
BJORLINGSACHS, I ;
SOUVAINE, DL .
DISCRETE & COMPUTATIONAL GEOMETRY, 1995, 13 (01) :77-109
[6]  
BRODEN B, 2001, P 13 CAN C COMP GEOM, P45
[7]   Guarding galleries and terrains [J].
Efrat, Alon ;
Har-Peled, Sariel .
INFORMATION PROCESSING LETTERS, 2006, 100 (06) :238-245
[8]  
Gavril F., 1974, Journal of Combinatorial Theory, Series B, V16, P47, DOI 10.1016/0095-8956(74)90094-X
[9]  
Ghosh S.K., 1987, PROC CANADIAN INFORM, P429
[10]   Approximation algorithms for art gallery problems in polygons [J].
Ghosh, Subir Kumar .
DISCRETE APPLIED MATHEMATICS, 2010, 158 (06) :718-722