Investigation of the Dissociation Mechanism of Single-Walled Carbon Nanotube on Mature Amyloid-β Fibrils at Single Nanotube Level

被引:9
|
作者
Lin, Dongdong [1 ]
Lei, Jiangtao [2 ,3 ,4 ]
Li, Shujie [2 ,3 ]
Zhou, Xingfei [1 ,5 ]
Wei, Gaunghong [2 ,3 ]
Yang, Xinju [2 ,3 ]
机构
[1] Ningbo Univ, Sch Phys Sci & Technol, Dept Microelect Sci & Engn, Ningbo 315211, Peoples R China
[2] Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China
[3] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
[4] Nanchang Univ, Inst Space Sci & Technol, Nanchang 330031, Jiangxi, Peoples R China
[5] Ningbo Univ, Dept Phys, Ningbo 315211, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2020年 / 124卷 / 17期
基金
上海市自然科学基金;
关键词
THIOFLAVIN-T-BINDING; SECONDARY STRUCTURE; AGGREGATION; DYNAMICS; NANOMATERIALS; INHIBITION; OLIGOMERS; PEPTIDES; PROTEINS; GROMACS;
D O I
10.1021/acs.jpcb.0c00916
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Amyloid fibrils originating from the fibrillogenesis of misfolded amyloid proteins are associated with the pathogenesis of many neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases. Carbon nanotubes have been extensively applied in our life and industry due to their unique chemical and physical properties. Nonetheless, the details between carbon nanotubes and mature amyloid fibrils remain elusive. In this study, we explored the interplay between single-walled carbon nanotubes (SWCNTs) and preformed amyloid-beta (A beta) fibrils by atomic force microscopy at the single SWCNT level, together with ThT fluorescence, cellular viability assays, infrared spectroscopy, and molecular dynamics (MD) simulations. The results demonstrated that SWCNTs could partially destroy the preformed A beta fibrils and form the A beta-surrounded-SWCNTs conjugates, as well as reduce the beta-sheet structures. Peak force quantitative nanomechanical measurements revealed that the conjugates have lower Young's modulus than fibrils. Furthermore, our MD simulation demonstrated that the dissociation ability was dependent on the binding sites of A beta fibrils. Overall, this study provides an insight into the dissociation mechanism between SWCNT and A beta fibrils, which could be beneficial for the study of bionanomaterials and the development of other potential drug candidates for amyloidosis.
引用
收藏
页码:3459 / 3468
页数:10
相关论文
共 50 条
  • [21] Single-walled carbon nanotube as an effective quencher
    Zhi Zhu
    Ronghua Yang
    Mingxu You
    Xiaoling Zhang
    Yanrong Wu
    Weihong Tan
    Analytical and Bioanalytical Chemistry, 2010, 396 : 73 - 83
  • [22] Single-walled carbon nanotube as an effective quencher
    Zhu, Zhi
    Yang, Ronghua
    You, Mingxu
    Zhang, Xiaoling
    Wu, Yanrong
    Tan, Weihong
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2010, 396 (01) : 73 - 83
  • [23] Single-walled carbon nanotube network ultramicroelectrodes
    Dumitrescu, Ioana
    Unwin, Patrick R.
    Wilson, Neil R.
    Macpherson, Julie V.
    ANALYTICAL CHEMISTRY, 2008, 80 (10) : 3598 - 3605
  • [24] Single-walled 4 Å carbon nanotube arrays
    N. Wang
    Z. K. Tang
    G. D. Li
    J. S. Chen
    Nature, 2000, 408 : 50 - 51
  • [25] Impedance of Single-Walled Carbon Nanotube Fibers
    Ksenevich, V. K.
    Gorbachuk, N. I.
    Poklonski, N. A.
    Samuilov, V. A.
    Kozlov, M. E.
    Wieck, A. D.
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2012, 20 (4-7) : 434 - 438
  • [26] Single-walled carbon nanotube growth on glass
    Bae, Eun Ju
    Min, Yo-Sep
    Kim, Unjeong
    Park, Wanjun
    NANOTECHNOLOGY, 2007, 18 (01)
  • [27] Single-walled carbon nanotube - amylopectin complexes
    Stobinski, L
    Tomasik, P
    Lii, CY
    Chan, HH
    Lin, HM
    Liu, HL
    Kao, CT
    Lu, KS
    CARBOHYDRATE POLYMERS, 2003, 51 (03) : 311 - 316
  • [28] Chaos in an embedded single-walled carbon nanotube
    Weipeng Hu
    Zichen Deng
    Bo Wang
    Huajiang Ouyang
    Nonlinear Dynamics, 2013, 72 : 389 - 398
  • [29] Exciton distribution on single-walled carbon nanotube
    Lue, Y.
    Liu, H.
    Gu, B.
    EUROPEAN PHYSICAL JOURNAL B, 2010, 74 (04): : 499 - 506
  • [30] Twisting of single-walled carbon nanotube bundles
    Qin, LC
    Iijima, S
    AMORPHOUS AND NANOSTRUCTURED CARBON, 2000, 593 : 33 - 38