Fractional Variational Problems Depending on Indefinite Integrals and with Delay

被引:8
作者
Almeida, Ricardo [1 ]
机构
[1] Univ Aveiro, Dept Math, CIDMA Ctr Res & Dev Math & Applicat, Aveiro, Portugal
关键词
Calculus of variations; Fractional calculus; Caputo derivatives; Time delay; TIME-DELAY; EQUATIONS; SYSTEMS; TERMS; MODEL;
D O I
10.1007/s40840-015-0248-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to exhibit a necessary and sufficient condition of optimality for functionals depending on fractional integrals and derivatives, on indefinite integrals and on the presence of time delay. We exemplify with one example, where we find analytically the minimizer.
引用
收藏
页码:1515 / 1528
页数:14
相关论文
共 33 条
[1]   Generalized Euler-Lagrange equations and mransversality conditions for FVPs in terms of the caputo derivative [J].
Agrawal, Om P. .
JOURNAL OF VIBRATION AND CONTROL, 2007, 13 (9-10) :1217-1237
[2]   A Bliss-type multiplier rule for constrained variational problems with time delay [J].
Agrawal, OP ;
Gregory, J ;
PericakSpector, K .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 210 (02) :702-711
[3]   Fractional variational problems depending on indefinite integrals [J].
Almeida, Ricardo ;
Pooseh, Shakoor ;
Torres, Delfim F. M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (03) :1009-1025
[4]   Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives [J].
Almeida, Ricardo ;
Torres, Delfim F. M. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (03) :1490-1500
[5]   Calculus of variations with fractional derivatives and fractional integrals [J].
Almeida, Ricardo ;
Torres, Delfim F. M. .
APPLIED MATHEMATICS LETTERS, 2009, 22 (12) :1816-1820
[6]  
[Anonymous], 1993, INTRO FRACTIONAL CA
[7]  
[Anonymous], 2006, Journal of the Electrochemical Society
[8]   Fractional Hamilton formalism within Caputo's derivative [J].
Baleanu, Dumitru ;
Agrawal, Om. P. .
CZECHOSLOVAK JOURNAL OF PHYSICS, 2006, 56 (10-11) :1087-1092
[9]   Fractional variational principles with delay [J].
Baleanu, Dumitru ;
Abdeljawad, Thabet ;
Jarad, Fahd .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (31)
[10]  
Bhrawy AH, 2014, B MALAYS MATH SCI SO, V37, P983