Eutectic Synthesis of the P2-Type NaxFe1/2Mn1/2O2 Cathode with Improved Cell Design for Sodium-Ion Batteries

被引:24
作者
Li, Mengya [1 ]
Wood, David L. [1 ,2 ]
Bai, Yaocai [1 ]
Essehli, Rachid [1 ]
Amin, Md Ruhul [1 ]
Jafta, Charl [1 ]
Muralidharan, Nitin [1 ]
Li, Jianlin [1 ,2 ]
Belharouak, Ilias [1 ,2 ]
机构
[1] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37830 USA
[2] Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, Knoxville, TN 37996 USA
关键词
sodium-ion batteries; Na2/3Fe1/2Mn1/2O2; eutectic alloy synthesis; sol-gel synthesis; hard carbon; sodiation; HIGH-CAPACITY; ELECTRODE MATERIAL; HARD CARBON; PERFORMANCE; INTERCALATION; INSERTION; BEHAVIOR; ANODE;
D O I
10.1021/acsami.0c04513
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
An engaging area of research in sodium-ion batteries (SIBs) has been focusing on discovery, design, and synthesis of high-capacity cathode materials in order to boost energy density to levels close enough to that of state-of-the-art lithium-ion batteries. Of particular interest, P2-type layered oxide, Na2/3Fe1/2Mn1/2O2, has been researched as a potential cathode in SIBs based on its high theoretical capacity of 260 mA h/g and use of noncritical materials. However, the reported synthesis methods are not only complex and energy-demanding but also often yield inhomogeneous and impure materials with capacities less than 200 mA h/g under impractical test conditions. Here, we report a novel synthesis route using low-temperature eutectic reaction to produce highly homogeneous, crystalline, and impurity-free P-2-NaxFe1/2Mn1/2O2 with enhanced Na-ion diffusivity and kinetics. The overall electrochemical performances of the Na-ion cells have been improved by pairing the P2-cathode with presodiated hard carbon anodes, leading to reversible capacities in the range of 180 mA h/g. This new approach is a contribution toward the simplification of synthesis and scalability of sodium-based cathodes with high crystallinity and fine-tuned morphology and the realization of a sodium-ion battery system with lower cost and improved electrochemical performance.
引用
收藏
页码:23951 / 23958
页数:8
相关论文
共 46 条
[1]   Part I: Electronic and ionic transport properties of the ordered and disordered LiNi0.5Mn1.5O4 spinel cathode [J].
Amin, Ruhul ;
Belharouk, Ilias .
JOURNAL OF POWER SOURCES, 2017, 348 :311-317
[2]   Part-II: Exchange current density and ionic diffusivity studies on the ordered and disordered spinel LiNi0.5Mn1.5O4 cathode [J].
Amin, Ruhul ;
Belharouak, Ilias .
JOURNAL OF POWER SOURCES, 2017, 348 :318-325
[3]   Characterization of Electronic and Ionic Transport in Li1-xNi0.33Mn0.33Co0.33O2 (NMC333) and Li1-xNi0.50Mn0.20Co0.30O2 (NMC523) as a Function of Li Content [J].
Amin, Ruhul ;
Chiang, Ming .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (08) :A1512-A1517
[4]   Anionic Redox Activity in a Newly Zn-Doped Sodium Layered Oxide P2-Na2/3Mn1-yZnyO2 (0 < y < 0.23) [J].
Bai, Xue ;
Sathiya, Mariyappan ;
Mendoza-Sanchez, Beatriz ;
Iadecola, Antonella ;
Vergnet, Jean ;
Dedryvere, Remi ;
Saubanere, Matthieu ;
Abakumov, Artem M. ;
Rozier, Patrick ;
Tarascon, Jean-Marie .
ADVANCED ENERGY MATERIALS, 2018, 8 (32)
[5]   Enhanced Sodium Ion Storage Behavior of P2-Type Na2/3Fe1/2Mn1/2O2 Synthesized via a Chelating Agent Assisted Route [J].
Bai, Ying ;
Zhao, Lixiang ;
Wu, Chuan ;
Li, Hui ;
Li, Yu ;
Wu, Feng .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (04) :2857-2865
[6]   Sodium intercalation in the phosphosulfate cathode NaFe2(PO4)(SO4)2 [J].
Ben Yahia, Hamdi ;
Essehli, Rachid ;
Amin, Ruhul ;
Boulahya, Khalid ;
Okumura, Toyoki ;
Belharouak, Ilias .
JOURNAL OF POWER SOURCES, 2018, 382 :144-151
[7]   Na0.67Mn1-xMgxO2 (0 ≤ x ≤ 0.2): a high capacity cathode for sodium-ion batteries [J].
Billaud, Juliette ;
Singh, Gurpreet ;
Armstrong, A. Robert ;
Gonzalo, Elena ;
Roddatis, Vladimir ;
Armand, Michel ;
Rojob, Teofilo ;
Bruce, Peter G. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (04) :1387-1391
[8]   Water sensitivity of layered P2/P3-NaxNi0.22Co0.11Mn0.66O2 cathode material [J].
Buchholz, Daniel ;
Chagas, Luciana Gomes ;
Vaalma, Christoph ;
Wu, Liming ;
Passerini, Stefano .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (33) :13415-13421
[9]   Toward Na-ion Batteries-Synthesis and Characterization of a Novel High Capacity Na Ion Intercalation Material [J].
Buchholz, Daniel ;
Moretti, Arianna ;
Kloepsch, Richard ;
Nowak, Sascha ;
Siozios, Vassilios ;
Winter, Martin ;
Passerini, Stefano .
CHEMISTRY OF MATERIALS, 2013, 25 (02) :142-148
[10]   Synthesis and characterization of high-temperature hexagonal P2-Na0.6MnO2 and its electrochemical behaviour as cathode in sodium cells [J].
Caballero, A ;
Hernán, L ;
Morales, J ;
Sánchez, L ;
Peña, JS ;
Aranda, MAG .
JOURNAL OF MATERIALS CHEMISTRY, 2002, 12 (04) :1142-1147