Parabolic potentials and wavelet transforms with the generalized translation

被引:21
作者
Aliev, IA [1 ]
Rubin, B
机构
[1] Akdeniz Univ, Dept Math, TR-07058 Antalya, Turkey
[2] Hebrew Univ Jerusalem, Math Inst, IL-91904 Jerusalem, Israel
关键词
parabolic wavelet transforms; parabolic potentials; generalized translation operator; singular heat operators; Calderon's reproducing formula;
D O I
10.4064/sm145-1-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Parabolic wavelet transforms associated with the singular heat operators -Delta gamma + partial derivative/partial derivativet and I-Delta gamma + partial derivative/partial derivativet, where Delta gamma = Sigma (n)(k=l) partial derivative (2)/partial derivativex(k)(2) + (2 gamma /x(n))partial derivative/partial derivativex(n), are introduced. These transforms are defined in terms of the relevant generalized translation operator. An analogue of the Calderon reproducing formula is established. New inversion formulas are obtained for generalized parabolic potentials representing negative powers of the singular heat operators.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 26 条
[11]   Calderon's reproducing formula associated with the Bessel operator [J].
Mourou, MA ;
Trimeche, K .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 219 (01) :97-109
[12]  
NOGIN VA, 1985, DOKL AKAD NAUK SSSR+, V284, P535
[13]  
Rao V. R. Gopala, 1977, AM J MATH, V99, P985
[14]   Fractional integrals and wavelet transforms associated with Blaschke-Levy representations on the sphere [J].
Rubin, B .
ISRAEL JOURNAL OF MATHEMATICS, 1999, 114 (1) :1-27
[15]  
Rubin B., 1996, Fractional Integrals and Potentials
[16]  
RUBIN B, 2000, ENCYCL MATH SCI, V2, P104
[17]  
Sampson C.H., 1968, THESIS RICE U
[18]  
Stein E.M., 1971, Princeton Math. Ser., V32
[19]  
STEIN EM, 1970, SINGULAR INTEGRALS D
[20]  
STEMPAK K, 1986, CR ACAD SCI I-MATH, V303, P15