Parabolic potentials and wavelet transforms with the generalized translation

被引:20
作者
Aliev, IA [1 ]
Rubin, B
机构
[1] Akdeniz Univ, Dept Math, TR-07058 Antalya, Turkey
[2] Hebrew Univ Jerusalem, Math Inst, IL-91904 Jerusalem, Israel
关键词
parabolic wavelet transforms; parabolic potentials; generalized translation operator; singular heat operators; Calderon's reproducing formula;
D O I
10.4064/sm145-1-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Parabolic wavelet transforms associated with the singular heat operators -Delta gamma + partial derivative/partial derivativet and I-Delta gamma + partial derivative/partial derivativet, where Delta gamma = Sigma (n)(k=l) partial derivative (2)/partial derivativex(k)(2) + (2 gamma /x(n))partial derivative/partial derivativex(n), are introduced. These transforms are defined in terms of the relevant generalized translation operator. An analogue of the Calderon reproducing formula is established. New inversion formulas are obtained for generalized parabolic potentials representing negative powers of the singular heat operators.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 26 条
  • [1] ALIEV IA, 1999, PARABOLIC WAVELET TR
  • [2] Aliev IA, 1992, SPECIAL PROBLEMS MAT, P56
  • [3] ALIEV IA, 1993, P 3 TURK AZ MATH S T, P14
  • [4] Arena O., 1975, ANN MAT PURA APPL, V105, P347, DOI [10.1007/BF02414938, DOI 10.1007/BF02414938]
  • [5] Bayrakci S, 1998, FRACT CALC APPL ANAL, V1, P365
  • [6] JONES BF, 1968, J MATH MECH, V18, P379
  • [7] Kilbas AA, 1993, Fractional Integral and Derivatives: Theory and Applications
  • [8] Kipriyanov I.A., 1997, Singulyarnye ellipticheskie kraevye zadachi (Singular Elliptic Boundary ValueProblems)
  • [9] Levitan B. M., 1951, USP MAT NAUK, V6, P102
  • [10] APPROXIMATION THEOREMS CONNECTED WITH GENERALIZED TRANSLATIONS
    LOFSTROM, J
    PEETRE, J
    [J]. MATHEMATISCHE ANNALEN, 1969, 181 (04) : 255 - &