Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene

被引:2
作者
Eichler, A. [1 ]
Moser, J. [1 ]
Chaste, J. [1 ]
Zdrojek, M. [1 ]
Wilson-Rae, I. [2 ]
Bachtold, A. [1 ]
机构
[1] Catalan Inst Nanotechnol, ICN CSIC CIN2, Barcelona 08193, Spain
[2] Tech Univ Munich, D-85748 Garching, Germany
基金
瑞士国家科学基金会;
关键词
NANOMECHANICAL RESONATORS; OSCILLATOR; SHEETS; MOTION; SENSOR;
D O I
10.1038/nnano.2011.71
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The theory of damping is discussed in Newton's Principia(1) and has been tested in objects as diverse as the Foucault pendulum, the mirrors in gravitational-wave detectors and submicrometre mechanical resonators. In general, the damping observed in these systems can be described by a linear damping force. Advances in nanofabrication mean that it is now possible to explore damping in systems with one or more atomic-scale dimensions. Here we study the damping of mechanical resonators based on carbon nanotubes(2-11) and graphene sheets(12-15). The damping is found to strongly depend on the amplitude of motion, and can be described by a nonlinear rather than a linear damping force. We exploit the nonlinear nature of damping in these systems to improve the figures of merit for both nanotube and graphene resonators. For instance, we achieve a quality factor of 100,000 for a graphene resonator.
引用
收藏
页码:339 / 342
页数:4
相关论文
共 30 条
  • [21] NEWTON I, 1687, PRINCIPIA, V2
  • [22] Two-dimensional atomic crystals
    Novoselov, KS
    Jiang, D
    Schedin, F
    Booth, TJ
    Khotkevich, VV
    Morozov, SV
    Geim, AK
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (30) : 10451 - 10453
  • [23] A tunable carbon nanotube electromechanical oscillator
    Sazonova, V
    Yaish, Y
    Üstünel, H
    Roundy, D
    Arias, TA
    McEuen, PL
    [J]. NATURE, 2004, 431 (7006) : 284 - 287
  • [24] Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators
    Singh, Vibhor
    Sengupta, Shamashis
    Solanki, Hari S.
    Dhall, Rohan
    Allain, Adrien
    Dhara, Sajal
    Pant, Prita
    Deshmukh, Mandar M.
    [J]. NANOTECHNOLOGY, 2010, 21 (16)
  • [25] Strong Coupling Between Single-Electron Tunneling and Nanomechanical Motion
    Steele, G. A.
    Huttel, A. K.
    Witkamp, B.
    Poot, M.
    Meerwaldt, H. B.
    Kouwenhoven, L. P.
    van der Zant, H. S. J.
    [J]. SCIENCE, 2009, 325 (5944) : 1103 - 1107
  • [26] Teufel JD, 2009, NAT NANOTECHNOL, V4, P820, DOI [10.1038/nnano.2009.343, 10.1038/NNANO.2009.343]
  • [27] Nonlinear switching dynamics in a nanomechanical resonator
    Unterreithmeier, Quirin P.
    Faust, Thomas
    Kotthaus, Joerg P.
    [J]. PHYSICAL REVIEW B, 2010, 81 (24):
  • [28] Phase Transitions of Adsorbed Atoms on the Surface of a Carbon Nanotube
    Wang, Zenghui
    Wei, Jiang
    Morse, Peter
    Dash, J. Gregory
    Vilches, Oscar E.
    Cobden, David H.
    [J]. SCIENCE, 2010, 327 (5965) : 552 - 555
  • [29] Intrinsic dissipation in nanomechanical resonators due to phonon tunneling
    Wilson-Rae, I.
    [J]. PHYSICAL REVIEW B, 2008, 77 (24)
  • [30] ZAITSEV S, 2009, NONLINEAR DAMPING MI