Ground Target Classification in Noisy SAR Images Using Convolutional Neural Networks

被引:74
作者
Wang, Jun [1 ]
Zheng, Tong [1 ]
Lei, Peng [1 ]
Bai, Xiao [2 ]
机构
[1] Beihang Univ, Sch Elect & Informat Engn, Beijing 100191, Peoples R China
[2] Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolutional neural network (CNN); SAR image quality assessment; SAR target classification; speckle noise; synthetic aperture radar (SAR); SPECKLE REDUCTION;
D O I
10.1109/JSTARS.2018.2871556
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Speckle noise is an inherent but annoying property in the synthetic aperture radar (SAR) imaging. In this paper we investigate the influence of speckle on the classical convolutional neural network (CNN) for SAR target classification. Then a dual stage coupled CNN architecture, named despeckling and classification coupled CNNs (DCC-CNNs), is proposed to distinguish multiple categories of ground targets in SAR images with strong and varying speckle. It first applies the despeckling sub-network for noise reduction. After that, residual speckle features as well as target information would be learned by the classification sub-network in order to solve the noise robustness problem of CNN. Besides, a new quantitative measure is developed for the quality assessment of SAR target images. It takes into account structural properties of the speckled SAR image of the target of interest and consistency with visual perception. Finally, a series of comparative experiments and discussions are carried out to validate the proposed assessment criterion and DCC-CNNs. Using synthetic SAR images based on the public MSTAR datasets, results show that the overall classification accuracy for ten ground target classes could be higher than 82% at a variety of speckle noise levels.
引用
收藏
页码:4180 / 4192
页数:13
相关论文
共 52 条
[1]   SAR image filtering based on the heavy-tailed Rayleigh model [J].
Achim, Alin ;
Kuruoglu, Ercan E. ;
Zerubia, Josiane .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (09) :2686-2693
[2]  
[Anonymous], 2016, Residual networks behave like ensembles of relatively shallow networks
[3]   A Tutorial on Speckle Reduction in Synthetic Aperture Radar Images [J].
Argenti, Fabrizio ;
Lapini, Alessandro ;
Alparone, Luciano ;
Bianchi, Tiziano .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2013, 1 (03) :6-35
[4]  
Barton D.K., 1997, Radar Technology Encyclopedia
[5]   Multiplicative Noise Removal Using Variable Splitting and Constrained Optimization [J].
Bioucas-Dias, Jose M. ;
Figueiredo, Mario A. T. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (07) :1720-1730
[6]  
Chen SZ, 2014, 2014 INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), P541, DOI 10.1109/DSAA.2014.7058124
[7]   Target Classification Using the Deep Convolutional Networks for SAR Images [J].
Chen, Sizhe ;
Wang, Haipeng ;
Xu, Feng ;
Jin, Ya-Qiu .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (08) :4806-4817
[8]  
Chierchia G, 2017, INT GEOSCI REMOTE SE, P5438, DOI 10.1109/IGARSS.2017.8128234
[9]   SAR Automatic Target Recognition Based on Euclidean Distance Restricted Autoencoder [J].
Deng, Sheng ;
Du, Lan ;
Li, Chen ;
Ding, Jun ;
Liu, Hongwei .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (07) :3323-3333
[10]   Equivalent Number of Scatterers for SAR Speckle Modeling [J].
Di Martino, Gerardo ;
Iodice, Antonio ;
Riccio, Daniele ;
Ruello, Giuseppe .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (05) :2555-2564