Lattice paths and n-colour compositions

被引:17
作者
Narang, Geetika [1 ]
Agarwal, A. K. [1 ]
机构
[1] Panjab Univ, Ctr Adv Studies Math, Chandigarh 160014, India
关键词
compositions; n-colour compositions; lattice paths; binomial identites;
D O I
10.1016/j.disc.2007.04.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Extending the 'walks' of van Lint and Wilson, we introduce a new kind of weighted lattice paths and show that the number of lattice paths with weight nu + m - 1 (0 <= m <= nu - 1) equals the number of n-colour compositions of nu. Two new binomial identities with their combinatorial meaning are also obtained. (c) 2007 Published by Elsevier B.V.
引用
收藏
页码:1732 / 1740
页数:9
相关论文
共 50 条
[31]   Parity Theorems for Statistics on Lattice Paths and Laguerre Configurations [J].
Shattuck, Mark ;
Wagner, Carl .
JOURNAL OF INTEGER SEQUENCES, 2005, 8 (05)
[32]   Lattice paths and the Prouhet-Thue-Morse sequence [J].
Fu, Shishuo ;
Gao, Bing .
THEORETICAL COMPUTER SCIENCE, 2024, 1022
[33]   Overpartitions, lattice paths, and Rogers-Ramanujan identities [J].
Corteel, Sylvie ;
Mallet, Olivier .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2007, 114 (08) :1407-1437
[34]   Lattice paths, sampling without replacement, and limiting distributions [J].
Kuba, M. ;
Panholzer, A. ;
Prodinger, H. .
ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01)
[35]   Enumerations of plane trees with multiple edges and Raney lattice paths [J].
Dziemianczuk, M. .
DISCRETE MATHEMATICS, 2014, 337 :9-24
[36]   A DOMINANCE RESULT FOR SELF-DUAL LATTICE PATHS AND APPLICATIONS [J].
MEHRA, KL ;
KRISHNAIAH, YSR ;
RAO, MS .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1993, 34 (02) :219-224
[37]   Square q,t-lattice paths and del(pn) [J].
Loehr, Nicholas A. ;
Warrington, Gregory S. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (02) :649-669
[38]   Analytic Combinatorics of Lattice Paths with Forbidden Patterns: Enumerative Aspects [J].
Asinowski, Andrei ;
Bacher, Axel ;
Banderier, Cyril ;
Gittenberger, Bernhard .
LANGUAGE AND AUTOMATA THEORY AND APPLICATIONS (LATA 2018), 2018, 10792 :195-206
[39]   Multiple partitions, lattice paths and a Burge-Bressoud-type correspondence [J].
Jacob, P. ;
Mathieu, P. .
DISCRETE MATHEMATICS, 2009, 309 (04) :878-886
[40]   A Chung–Feller theorem for lattice paths with respect to cyclically shifting boundaries [J].
Victor J. W. Guo ;
Xiao-Xin Wang .
Journal of Algebraic Combinatorics, 2019, 50 :119-126