Solving multiobjective clustering using an immune-inspired algorithm

被引:0
作者
Gong, Maoguo [1 ]
Zhang, Lining [1 ]
Jiao, Licheng [1 ]
Gou, Shuiping [1 ]
机构
[1] Xidian Univ, Inst Intelligent Informat Proc, Xian 710071, Peoples R China
来源
2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS | 2007年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this study, we introduced a novel multiobjective optimization algorithm, Nondominated Neighbor Immune Algorithm (NNIA), to solve the muliobjective clustering problems. NNIA solves multiobjective optimization problems by using a nondominated neighbor-based selection technique, an immune inspired operator, two heuristic search operators and elitism. The main novelty of NNIA is that the selection technique only selects minority isolated nondominated individuals in current population to clone proportionally to the crowding-distance values, recombine and mutate. As a result, NNIA pays more attention to the less-crowded regions in the current trade-off front. The experimental results on seven artificial data sets with different manifold structure and six real-world data sets show that the NNIA is an effective algorithm for solving multiobjective clustering problems, and the NNIA based multiobjective clustering technique is a cogent unsupervised learning method.
引用
收藏
页码:15 / 22
页数:8
相关论文
共 37 条
  • [1] An Overview of Evolutionary Algorithms for Parameter Optimization
    Baeck, Thomas
    Schwefel, Hans-Paul
    [J]. EVOLUTIONARY COMPUTATION, 1993, 1 (01) : 1 - 23
  • [2] Blake C.L., 1998, UCI repository of machine learning databases
  • [3] Coell C. A. Coello, 2002, P 1 INT C ART IMM SY, P212
  • [4] Solving multiobjective optimization problems using an artificial immune system
    Coello C.A.C.
    Cortés N.C.
    [J]. Genetic Programming and Evolvable Machines, 2005, 6 (2) : 163 - 190
  • [5] Corne D. W., 2001, P 3 ANN C GENETIC EV, P283
  • [6] Cutello V, 2005, LECT NOTES COMPUT SC, V3627, P13
  • [7] Cutello V, 2005, LECT NOTES COMPUT SC, V3449, P54
  • [8] Cutello V, 2004, LECT NOTES COMPUT SC, V3239, P263
  • [9] de Castro LN, 2002, IEEE C EVOL COMPUTAT, P699, DOI 10.1109/CEC.2002.1007011
  • [10] Learning and optimization using the clonal selection principle
    de Castro, LN
    Von Zuben, FJ
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (03) : 239 - 251