Dynamic stochastic copula models: estimation, inference and applications

被引:95
作者
Hafner, Christian M. [1 ,2 ]
Manner, Hans [3 ]
机构
[1] Catholic Univ Louvain, Inst Stat, B-1348 Louvain, Belgium
[2] Catholic Univ Louvain, CORE, B-1348 Louvain, Belgium
[3] Univ Cologne, Chair Stat & Econometr, D-50931 Cologne, Germany
关键词
VOLATILITY MODELS; MULTIVARIATE; VARIANCE; DEPENDENCE;
D O I
10.1002/jae.1197
中图分类号
F [经济];
学科分类号
02 ;
摘要
We propose a new dynamic copula model in which the parameter characterizing dependence follows an autoregressive process. As this model class includes the Gaussian copula with stochastic correlation process, it can be viewed as a generalization of multivariate stochastic volatility models. Despite the complexity of the model, the decoupling of marginals and dependence parameters facilitates estimation. We propose estimation in two steps, where first the parameters of the marginal distributions are estimated, and then those of the copula. Parameters of the latent processes (volatilities and dependence) are estimated using efficient importance sampling. We discuss goodness-of-fit tests and ways to forecast the dependence parameter. For two bivariate stock index series, we show that the proposed model outperforms standard competing models. Copyright (c) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:269 / 295
页数:27
相关论文
共 42 条
[21]   Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models [J].
Engle, R .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2002, 20 (03) :339-350
[22]  
Engle R.F., 2008, Dynamic equicorrelation
[23]   AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY WITH ESTIMATES OF THE VARIANCE OF UNITED-KINGDOM INFLATION [J].
ENGLE, RF .
ECONOMETRICA, 1982, 50 (04) :987-1007
[24]  
Fleming J, 2001, J FINANC, V34, P157
[25]   STATISTICAL-INFERENCE PROCEDURES FOR BIVARIATE ARCHIMEDEAN COPULAS [J].
GENEST, C ;
RIVEST, LP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (423) :1034-1043
[26]   Goodness-of-fit procedures for copula models based on the probability integral transformation [J].
Genest, C ;
Quessy, JF ;
Rémillard, B .
SCANDINAVIAN JOURNAL OF STATISTICS, 2006, 33 (02) :337-366
[27]   Goodness-of-fit tests for copulas: A review and a power study [J].
Genest, Christian ;
Remillard, Bruno ;
Beaudoin, David .
INSURANCE MATHEMATICS & ECONOMICS, 2009, 44 (02) :199-213
[28]  
Hamilton J. D., 2020, TIME SERIES ANAL
[29]   MULTIVARIATE STOCHASTIC VARIANCE MODELS [J].
HARVEY, A ;
RUIZ, E ;
SHEPHARD, N .
REVIEW OF ECONOMIC STUDIES, 1994, 61 (02) :247-264
[30]   BAYESIAN-ANALYSIS OF STOCHASTIC VOLATILITY MODELS [J].
JACQUIER, E ;
POLSON, NG ;
ROSSI, PE .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1994, 12 (04) :371-389