Dynamic stochastic copula models: estimation, inference and applications

被引:95
作者
Hafner, Christian M. [1 ,2 ]
Manner, Hans [3 ]
机构
[1] Catholic Univ Louvain, Inst Stat, B-1348 Louvain, Belgium
[2] Catholic Univ Louvain, CORE, B-1348 Louvain, Belgium
[3] Univ Cologne, Chair Stat & Econometr, D-50931 Cologne, Germany
关键词
VOLATILITY MODELS; MULTIVARIATE; VARIANCE; DEPENDENCE;
D O I
10.1002/jae.1197
中图分类号
F [经济];
学科分类号
02 ;
摘要
We propose a new dynamic copula model in which the parameter characterizing dependence follows an autoregressive process. As this model class includes the Gaussian copula with stochastic correlation process, it can be viewed as a generalization of multivariate stochastic volatility models. Despite the complexity of the model, the decoupling of marginals and dependence parameters facilitates estimation. We propose estimation in two steps, where first the parameters of the marginal distributions are estimated, and then those of the copula. Parameters of the latent processes (volatilities and dependence) are estimated using efficient importance sampling. We discuss goodness-of-fit tests and ways to forecast the dependence parameter. For two bivariate stock index series, we show that the proposed model outperforms standard competing models. Copyright (c) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:269 / 295
页数:27
相关论文
共 42 条
[1]   Pair-copula constructions of multiple dependence [J].
Aas, Kjersti ;
Czado, Claudia ;
Frigessi, Arnoldo ;
Bakken, Henrik .
INSURANCE MATHEMATICS & ECONOMICS, 2009, 44 (02) :182-198
[2]  
[Anonymous], 2001, THEORETICAL EMPIRICA, DOI [10.3386/w8554, DOI 10.3386/W8554]
[3]  
[Anonymous], 2001, Sequential Monte Carlo methods in practice
[4]  
[Anonymous], 1997, MULTIVARIATE MODELS
[5]  
[Anonymous], P SIS 2007 INT C RIS
[6]  
[Anonymous], 1986, MODELLING FINANCIAL
[7]   The structure of dynamic correlations in multivariate stochastic volatility models [J].
Asai, Manabu ;
McAleer, Michael .
JOURNAL OF ECONOMETRICS, 2009, 150 (02) :182-192
[8]  
Bedford T, 2002, ANN STAT, V30, P1031
[9]   GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY [J].
BOLLERSLEV, T .
JOURNAL OF ECONOMETRICS, 1986, 31 (03) :307-327
[10]   Dependence structures for multivariate high-frequency data in finance [J].
Breymann, W ;
Dias, A ;
Embrechts, P .
QUANTITATIVE FINANCE, 2003, 3 (01) :1-14