Multiple-soliton solutions and analytical solutions to a nonlinear evolution equation

被引:26
作者
Kaplan, Melike [1 ]
Ozer, Mehmet Naci [2 ]
机构
[1] Kastamonu Univ, Art Sci Fac, Dept Math, Kastamonu, Turkey
[2] Eskisehir Osmangazi Univ, Art Sci Fac, Dept Math Comp, Eskisehir, Turkey
关键词
Multiple-soliton solutions; Simplified Hirota's method; Exact solutions; Transformed rational function method; KADOMTSEV-PETVIASHVILI EQUATION; ZAKHAROV-KUZNETSOV EQUATION; HOMOGENEOUS BALANCE METHOD; TRAVELING-WAVE SOLUTIONS; POWER-LAW NONLINEARITY; SCHRODINGER-EQUATION; MACCARI SYSTEM; SHALLOW-WATER; TRANSFORMATIONS; FIBER;
D O I
10.1007/s11082-017-1270-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The mathematical modelling of physical systems is generally expressed by nonlinear evolution equations. Therefore, it is critical to obtain solutions to these equations. We have employed the Hirota's method to derive multiple soliton solutions to (2+1)-dimensional nonlinear evolution equation. Then we have studied the transformed rational function method to construct different types of analytical solutions to the nonlinear evolution equations. This algorithm provides a more convenient and systematical handling of the solution process of nonlinear evolution equations, unifying the homogeneous balance method, the mapping method, the tanh-function method, the F-expansion method and the exp-function method.
引用
收藏
页数:10
相关论文
共 47 条
[1]   Exact solutions to the Benney-Luke equation and the Phi-4 equations by using modified simple equation method [J].
Akter, Jesmin ;
Akbar, M. Ali .
RESULTS IN PHYSICS, 2015, 5 :125-130
[2]   Multi-soliton solutions of the BBM equation arisen in shallow water [J].
Alsayyed, O. ;
Jaradat, H. M. ;
Jaradat, M. M. M. ;
Mustafa, Zead ;
Shatat, Feras .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (04) :1807-1814
[3]  
[Anonymous], 1991, LONDON MATH SOC LECT
[4]   Painleve test for some (2+1)-dimensional nonlinear equations [J].
Bekir, A. .
CHAOS SOLITONS & FRACTALS, 2007, 32 (02) :449-455
[5]   Dynamic behaviors for a perturbed nonlinear Schrodinger equation with the power-law nonlinearity in a non-Kerr medium [J].
Chai, Jun ;
Tian, Bo ;
Zhen, Hui-Ling ;
Sun, Wen-Rong ;
Liu, De-Yin .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 45 :93-103
[6]   New and more exact traveling wave solutions to integrable (2+1)-dimensional Maccari system [J].
Cheemaa, Nadia ;
Younis, Muhammad .
NONLINEAR DYNAMICS, 2016, 83 (03) :1395-1401
[7]   Exact solutions of the (2+1)-dimensional Camassa-Holm Kadomtsev-Petviashvili equation [J].
Ebadi, Ghodrat ;
Fard, Nazila Yousefzadeh ;
Triki, Houria ;
Biswas, Anjan .
NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2012, 17 (03) :280-296
[8]   Exact solitons of the coupled sine-Gordon equation in nonlinear system [J].
Ekici, M. ;
Zhou, Qin ;
Sonmezoglu, A. ;
Mirzazadeh, M. .
OPTIK, 2017, 136 :435-444
[9]   Exact solutions of modified Zakharov-Kuznetsov equation by the homogeneous balance method [J].
Eslami, M. ;
Vajargah, B. Fathi ;
Mirzazadeh, M. .
AIN SHAMS ENGINEERING JOURNAL, 2014, 5 (01) :221-225
[10]   A note on the homogeneous balance method [J].
Fan, EG ;
Zhang, HQ .
PHYSICS LETTERS A, 1998, 246 (05) :403-406