High Gain Hybrid Graphene-Organic Semiconductor Phototransistors

被引:72
作者
Huisman, Everardus H. [1 ,2 ]
Shulga, Artem G. [1 ]
Zomer, Paul J. [1 ,2 ]
Tombros, Nikolaos [1 ]
Bartesaghi, Davide [1 ,3 ]
Bisri, Satria Zulkarnaen [1 ]
Loi, Maria A. [1 ]
Koster, L. Jan Anton [1 ]
van Wees, Bart J. [1 ]
机构
[1] Univ Gronigen, Zernike Inst Adv Mat, NL-9747 AG Groningen, Netherlands
[2] Stichting Fundamenteel Onderzoek Mat, NL-3502 GA Utrecht, Netherlands
[3] Dutch Polymer Inst, NL-5600 AX Eindhoven, Netherlands
基金
欧洲研究理事会;
关键词
graphene; organic electronics; organic semiconductors; photodetectors; phototransistors; photoconductivity; QUANTUM DOTS; CHARGE-TRANSFER; PHOTODETECTORS; HETEROSTRUCTURES; PHOTORESPONSE; LAYER;
D O I
10.1021/acsami.5b00610
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Hybrid phototransistors of graphene and the organic semiconductor poly(3-hexylthiophene-2,5-diyl) (P3HT) are presented. Two types of phototransistors are demonstrated with a charge carrier transit time that differs by more than 6 orders of magnitude. High transit time devices are fabricated using a photoresist-free recipe to create largearea graphene transistors made out of graphene grown by chemical vapor deposition. Low transit time devices are fabricated out of mechanically exfoliated graphene on top of mechanically exfoliated hexagonal boron nitride using standard e-beam lithography. Responsivities exceeding 10(5) A/W are obtained for the low transit time devices.
引用
收藏
页码:11083 / 11088
页数:6
相关论文
共 31 条
[1]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/NPHOTON.2010.186, 10.1038/nphoton.2010.186]
[2]  
Bube R.H., 1960, Photoconductivity of Solids
[3]   Biologically inspired graphene-chlorophyll phototransistors with high gain [J].
Chen, Shao-Yu ;
Lu, Yi-Ying ;
Shih, Fu-Yu ;
Ho, Po-Hsun ;
Chen, Yang-Fang ;
Chen, Chun-Wei ;
Chen, Yit-Tsong ;
Wang, Wei-Hua .
CARBON, 2013, 63 :23-29
[4]   All Carbon-Based Photodetectors: An eminent integration of graphite quantum dots and two dimensional graphene [J].
Cheng, Shih-Hao ;
Weng, Tong-Min ;
Lu, Meng-Lin ;
Tan, Wei-Chun ;
Chen, Ju-Ying ;
Chen, Yang-Fang .
SCIENTIFIC REPORTS, 2013, 3
[5]   Oxygen-Assisted Charge Transfer Between ZnO Quantum Dots and Graphene [J].
Guo, Wenhao ;
Xu, Shuigang ;
Wu, Zefei ;
Wang, Ning ;
Loy, M. M. T. ;
Du, Shengwang .
SMALL, 2013, 9 (18) :3031-3036
[6]   Photoelectrical response of hybrid graphene-PbS quantum dot devices [J].
Huang, Y. Q. ;
Zhu, R. J. ;
Kang, N. ;
Du, J. ;
Xu, H. Q. .
APPLIED PHYSICS LETTERS, 2013, 103 (14)
[7]   Photoconductivity and enhanced memory effects in hybrid C60-graphene transistors [J].
Jeon, Eun-Kyoung ;
Yang, Cheol-Soo ;
Shen, Yanfei ;
Nakanishi, Takashi ;
Jeong, Dae-sung ;
Kim, Ju-Jin ;
Ahn, Ki-suk ;
Kong, Ki-jeong ;
Lee, Jeong-O .
NANOTECHNOLOGY, 2012, 23 (45)
[8]   Intrinsic photocurrent characteristics of graphene photodetectors passivated with Al2O3 [J].
Kang, Chang Goo ;
Lee, Sang Kyung ;
Choe, Sunhee ;
Lee, Young Gon ;
Lee, Chang-Lyoul ;
Lee, Byoung Hun .
OPTICS EXPRESS, 2013, 21 (20) :23391-23400
[9]   Electron accumulation in graphene by interaction with optically excited quantum dots [J].
Klekachev, A. V. ;
Cantoro, M. ;
van der Veen, M. H. ;
Stesmans, A. L. ;
Heyns, M. M. ;
De Gendt, S. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2011, 43 (05) :1046-1049
[10]  
Konstantatos G, 2012, NAT NANOTECHNOL, V7, P363, DOI [10.1038/nnano.2012.60, 10.1038/NNANO.2012.60]