Growth Kinetics of Gold Nanorods Synthesized by a Seed-Mediated Method Under pH Acidic Conditions

被引:5
作者
Almada, M. [1 ]
Ruiz, E. D. [1 ]
Ibarra-Hurtado, J. [1 ]
Hassan, N. [2 ]
Kogan, M. J. [2 ,3 ]
Cadena-Nava, R. D. [4 ]
Valdes, M. A. [1 ]
Juarez, J. [1 ]
机构
[1] Univ Sonora, Dept Fis, Hermosillo 83000, Sonora, Mexico
[2] Univ Chile, Fac Ciencias Quim & Farmaceut, Lab Nanobiotecnol, Santiago 8380494, Chile
[3] Adv Ctr Chron Dis ACCDiS, Santiago De Chile 8380492, Spain
[4] Univ Nacl Autonoma Mexico, Ctr Nanosci & Nanotechnol, Km 107 Carretera Tijuana Ensenada S-N, Ensenada 22800, Baja California, Mexico
关键词
Gold Nanorods; Kinetic Growth; Anisotropic; SPR; ASPECT-RATIO; HIGH-YIELD; OPTICAL-PROPERTIES; AQUEOUS-SOLUTION; ASCORBIC-ACID; SHAPE; SIZE; NANOPARTICLES; NANOCRYSTALS; DEPENDENCE;
D O I
10.1166/jnn.2016.12438
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A systematic study of the effect of ascorbic acid concentration on the growth kinetics of gold nanorods under pH acidic conditions was done. We employed the seed-mediated approach at pH 1.25 using different ascorbic acid/Au+3 molar ratios. We monitored the gold nanorods growth using UV-Vis spectroscopy and the apparent growth rates were determined fitting the experimental data with a theoretical non-linear Boltzmann function. We found that, under the conditions proven, an increase of the ascorbic acid/Au+3 molar ratio induces a red-shift in the longitudinal surface plasmon resonance, as well as the formation of undesirable by-products. The apparent growth rates show a linear dependence with the increment of ascorbic acid concentration. We determined a range of growth rates from 0.034 to 0.078 min(-1), from the lowest to the highest molar ratio used, respectively; which corresponds to deposition rates from 0.128 to 0.235 atoms per second. A low pH in the growth solution promotes a slower growth nanorods rate, which prevents the drastic blue-shift observed in the synthesis at higher pH and provides an aspect ratio tuning.
引用
收藏
页码:7707 / 7714
页数:8
相关论文
共 32 条
[1]   Preparation and optical scattering characterization of gold nanorods and their application to a dot-immunogold assay [J].
Alekseeva, AV ;
Bogatyrev, VA ;
Dykman, LA ;
Khlebtsov, BN ;
Trachuk, LA ;
Melnikov, AG ;
Khlebtsov, NG .
APPLIED OPTICS, 2005, 44 (29) :6285-6295
[2]   Optical properties of gold nanorods: DDA simulations supported by experiments [J].
Brioude, A ;
Jiang, XC ;
Pileni, MP .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (27) :13138-13142
[3]   Chemical Kinetics of Gold Nanorod Growth in Aqueous CTAB Solutions [J].
Bullen, Craig ;
Zijlstra, Peter ;
Bakker, Eric ;
Gu, Min ;
Raston, Colin .
CRYSTAL GROWTH & DESIGN, 2011, 11 (08) :3375-3380
[4]   Nanomedicine for targeted photothermal cancer therapy: where are we now? [J].
Chen, Feng ;
Cai, Weibo .
NANOMEDICINE, 2015, 10 (01) :1-3
[5]   Architecture of Metallic Nanostructures: Synthesis Strategy and Specific Applications [J].
Chen, Hao Ming ;
Liu, Ru-Shi .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (09) :3513-3527
[6]  
Cheng J, 2011, J CHIN CHEM SOC-TAIP, V58, P822
[7]   Formation of Gold Nanorods by a Stochastic "Popcorn" Mechanism [J].
Edgar, Jonathan A. ;
McDonagh, Andrew M. ;
Cortie, Michael B. .
ACS NANO, 2012, 6 (02) :1116-1125
[8]   Stability of ascorbic acid in aqueous and aqueous-organic solutions for quantitative determination [J].
Golubitskii, G. B. ;
Budko, E. V. ;
Basova, E. M. ;
Kostarnoi, A. V. ;
Ivanov, V. M. .
JOURNAL OF ANALYTICAL CHEMISTRY, 2007, 62 (08) :742-747
[9]   Wet-chemical approach to three-dimensional gold nanocorallines: Synthesis and application in surface-enhanced Raman spectroscopy [J].
Guo, Shaojun ;
Wang, Erkang .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2007, 315 (02) :795-799
[10]   Growth Kinetic of a Rod-Shaped Metal Nanocrystal [J].
Henkel, Andreas ;
Schubert, Olaf ;
Plech, Anton ;
Soennichsen, Carsten .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (24) :10390-10394