An Extended-Rational Arnoldi Method for Large Matrix Exponential Evaluations

被引:1
作者
Bentbib, A. H. [1 ]
El Ghomari, M. [2 ]
Jbilou, K. [3 ,4 ]
机构
[1] Cadi Ayyad Univ, Fac Sci & Technol, Lab LAMAI, Marrakech, Morocco
[2] Mohammed V Univ Rabat, Ecole Normale Super, Dept Math, Av Mohammed Belhassan El Ouazzani,BP 5118, Rabat, Morocco
[3] ULCO, Lab LMPA, 50 Rue F Buisson, Calais, France
[4] Univ UM6P, Benguerir, Morocco
关键词
Extended-rational Krylov subspace; Exponential matrix function; Global Arnoldi method; Network analysis; Partial differential equations; KRYLOV SUBSPACE APPROXIMATIONS; REDUCTION;
D O I
10.1007/s10915-022-01808-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The numerical computation of a matrix function such as exp (-t A)V, where A is an n x n large and sparse matrix, V is an n x p block with p << n, and t > 0 arises in various applications including network analysis, the solution of time-dependent partial differential equations (PDE's) and others. In this work, we propose the use of the global extended-rational Arnoldi method for computing approximations of such functions. The derived method projects the initial problem onto the global extended-rational Krylov subspace RKme(A, V) = span{Pi(m)(i=1)(A + s(i) I-n)V-1, ..., (A + s(1) I-n)V-1, V, AV, ..., A(m-1)V} of a low dimension. An adaptive procedure of getting the shifts {s(1), ..., s(m)} during the algorithmic process is given and analyzed. Applications to the solution of time-dependent PDE's and to network analysis are presented. Numerical examples are presented to show the performance of the global extended-rational Arnoldi process.
引用
收藏
页数:23
相关论文
共 32 条
[1]   A global rational Arnoldi method for model reduction [J].
Abidi, O. ;
Hached, M. ;
Jbilou, K. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 325 :175-187
[2]  
Abou-Kandil H., 2003, SYSTEMS CONTROL FDN, DOI DOI 10.1007/978-3-0348-8081-7
[3]   New convergence results on the global GMRES method for diagonalizable matrices [J].
Bellalij, M. ;
Jbilou, K. ;
Sadok, H. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 219 (02) :350-358
[4]   Shifted extended global Lanczos processes for trace estimation with application to network analysis [J].
Bentbib, A. H. ;
El Ghomari, M. ;
Jbilou, K. ;
Reichel, L. .
CALCOLO, 2021, 58 (01)
[5]   A global Lanczos method for image restoration [J].
Bentbib, A. H. ;
El Guide, M. ;
Jbilou, K. ;
Reichel, L. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 300 :233-244
[6]  
Benzi M., 2020, GAMM MITTEILUNGEN, V43
[7]  
Benzohra Mohamed Nadjib, 2021, Bulletin de la Societe Zoologique de France, V146, P1
[8]   ART: Adaptive residual-time restarting for Krylov subspace matrix exponential evaluations [J].
Botchev, M. A. ;
Knizhnerman, L. A. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 364
[9]   A generalized global Arnoldi method for ill-posed matrix equations [J].
Bouhamidi, A. ;
Jbilou, K. ;
Reichel, L. ;
Sadok, H. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (08) :2078-2089
[10]   Convergence properties of some block Krylov subspace methods for multiple linear systems [J].
Bouyouli, R. ;
Jbilou, K. ;
Sadaka, R. ;
Sadok, H. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 196 (02) :498-511