Solid-State Fabrication of SnS2/C Nanospheres for High-Performance Sodium Ion Battery Anode

被引:177
|
作者
Wang, Jingjing [2 ]
Luo, Chao [1 ]
Mao, Jianfeng [1 ]
Zhu, Yujie [1 ]
Fan, Xiulin [1 ]
Gao, Tao [1 ]
Mignerey, Alice C. [2 ]
Wang, Chunsheng [1 ]
机构
[1] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20742 USA
关键词
tin disulfide; solid-state synthesis; nanospheres; anode; sodium-ion batteries; cycling stability; TRANSITION-METAL OXIDES; LITHIUM-ION; HIGH-CAPACITY; GRAPHENE OXIDE; CYCLE LIFE; STORAGE; COMPOSITE; CAPABILITY; STABILITY; INSERTION;
D O I
10.1021/acsami.5b02413
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Tin disulfide (SnS2) has emerged as a promising anode material for sodium ion batteries (NIBs) due to its unique layered structure, high theoretical capacity, and low cost. Conventional SnS2 nanomaterials are normally synthesized using hydrothermal method, which is time-consuming and difficult to scale up for mass production. In this study, we develop a simple solid-state reaction method, in which the carbon-coated SnS2 (SnS2/C) anode materials were synthesized by annealing metallic Sn, sulfur powder, and polyacrylonitrile in a sealed vacuum glass tube. The SnS2/C nanospheres with unique layered structure exhibit a high reversible capacity of 660 mAh g(-1) at a current density of 50 mA g(-1) and maintain at 570 mAh g(-1) for 100 cycles with a degradation rate of 0.14% per cycle, demonstrating one of the best cycling performances in all reported SnS2/C anodes for NIBs to date. The superior cycling stability of SnS2/C electrode is attributed to the stable nanosphere morphology and structural integrity during charge/discharge cycles as evidenced by ex situ characterization.
引用
收藏
页码:11476 / 11481
页数:6
相关论文
共 50 条
  • [1] Neurons-system-like structured SnS2/CNTs composite for high-performance sodium-ion battery anode
    Zhu, Ling
    Yang, Xue-Xian
    Xiang, Yan-Hong
    Kong, Peng
    Wu, Xian-Wen
    RARE METALS, 2021, 40 (06) : 1383 - 1390
  • [2] Neurons-system-like structured SnS2/CNTs composite for high-performance sodium-ion battery anode
    Ling Zhu
    Xue-Xian Yang
    Yan-Hong Xiang
    Peng Kong
    Xian-Wen Wu
    Rare Metals, 2021, 40 : 1383 - 1390
  • [3] SnS2 Nanowall Arrays toward High-Performance Sodium Storage
    Zhou, Peng
    Wang, Xiao
    Guan, Wenhao
    Zhang, Dan
    Fang, Libin
    Jiang, Yinzhu
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (08) : 6979 - 6987
  • [4] SnS2@C Hollow Nanospheres with Robust Structural Stability as High-Performance Anodes for Sodium Ion Batteries
    Li, Shuaihui
    Zhao, Zhipeng
    Li, Chuanqi
    Liu, Zhongyi
    Li, Dan
    NANO-MICRO LETTERS, 2019, 11 (01)
  • [5] MoS2/SnS2 nanocomposite as stable sodium-ion battery anode
    Yan, Jingkai
    Li, Qinyi
    Hao, Yu
    Dai, Chen
    Chen, Yu
    FUNCTIONAL MATERIALS LETTERS, 2020, 13 (01)
  • [6] SnS/C nanocomposites for high-performance sodium ion battery anodes
    Yu, Seung-Ho
    Jin, Aihua
    Huang, Xin
    Yang, Yao
    Huang, Rong
    Brock, Joel D.
    Sung, Yung-Eun
    Abruna, Hector D.
    RSC ADVANCES, 2018, 8 (42): : 23847 - 23853
  • [7] Cobalt-doping SnS2 nanosheets towards high-performance anodes for sodium ion batteries
    Wang, Liqin
    Zhao, Quanqing
    Wang, Zhitao
    Wu, Yujun
    Ma, Xilan
    Zhu, Youqi
    Cao, Chuanbao
    NANOSCALE, 2020, 12 (01) : 248 - 255
  • [8] SnS-SnO2 Heterostructures Anchored on GO as a High-Performance Anode for Sodium Ion Battery
    Li, Qian
    Yu, Fuyuan
    Cui, Yaru
    Wang, Juan
    Zhao, Yan
    Peng, Jianhong
    CHEMISTRY-A EUROPEAN JOURNAL, 2023, 29 (23)
  • [9] Sandwich-like SnS2/Graphene/SnS2 with Expanded Interlayer Distance as High-Rate Lithium/Sodium-Ion Battery Anode Materials
    Jiang, Yong
    Song, Daiyun
    Wu, Juan
    Wang, Zhixuan
    Huang, Shoushuang
    Xu, Yi
    Chen, Zhiwen
    Zhao, Bing
    Zhang, Jiujun
    ACS NANO, 2019, 13 (08) : 9100 - 9111
  • [10] Surface-Confined SnS2@C@rGO as High-Performance Anode Materials for Sodium- and Potassium-Ion Batteries
    Li, Deping
    Sun, Qing
    Zhang, Yamin
    Chen, Lina
    Wang, Zhongpu
    Liang, Zhen
    Si, Pengchao
    Ci, Lijie
    CHEMSUSCHEM, 2019, 12 (12) : 2689 - 2700