Application of Improved Whale Optimization Algorithm in Parameter Identification of Hydraulic Turbine at No-Load

被引:12
作者
Tian, Tian [1 ]
Zhao, Wei [2 ]
Zhen, Wenxi [2 ]
Liu, Changyu [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Hydropower & Informat Engn, Wuhan 430074, Peoples R China
[2] State Grid Gansu Elect Power Res Inst, Lanzhou 730070, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Hydraulic turbine governing system; Hydroelectric generating unit; No-load; Parameter identification; Whale optimization algorithm; Measured data; GENETIC ALGORITHM; ENERGY; POWER; MODEL;
D O I
10.1007/s13369-020-04434-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The accuracy of hydraulic turbine model has a direct influence on controller design and system stability. This paper presents an improved whale optimization algorithm (IWOA) and its application in parameter identification of hydraulic turbine at no-load. In IWOA, two strategies including the increase in global exploration probability and combination of immune operator are introduced to avoid local optimum. Besides, in the identification process, the adaptive modification method is developed to solve the estimated parameter range uncertainty problem. Finally, in the example of Unit 4 in Huanglongtan Hydropower Plant, China, the results of different methods are compared. Considering the indicators of cost, iteration and total computation time, the results show that IWOA has faster convergence and higher precision than WOA.
引用
收藏
页码:9913 / 9924
页数:12
相关论文
共 42 条
[1]   A Novel Whale Optimization Algorithm for Cryptanalysis in Merkle-Hellman Cryptosystem [J].
Abdel-Basset, Mohamed ;
El-Shahat, Doaa ;
El-henawy, Ibrahim ;
Sangaiah, Arun Kumar ;
Ahmed, Syed Hassan .
MOBILE NETWORKS & APPLICATIONS, 2018, 23 (04) :723-733
[2]   Optimizing connection weights in neural networks using the whale optimization algorithm [J].
Aljarah, Ibrahim ;
Faris, Hossam ;
Mirjalili, Seyedali .
SOFT COMPUTING, 2018, 22 (01) :1-15
[3]  
Munoz-Hernandez GA, 2013, ADV IND CONTROL, P3, DOI 10.1007/978-1-4471-2291-3_1
[4]  
AZIZ MAE, 2017, EXPERT SYSTEMS APPL, V83, P242, DOI DOI 10.1016/J.ESWA.2017.04.023
[5]   Applying Modified Discrete Particle Swarm Optimization Algorithm and Genetic Algorithm for System Identification [J].
Badamchizadeh, M. A. ;
Madani, K. .
2010 2ND INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING (ICCAE 2010), VOL 5, 2010, :354-358
[6]  
Bai J, 2010, AS PAC POW EN ENG C, P1
[7]   Improved gravitational search algorithm for parameter identification of water turbine regulation system [J].
Chen, Zhihuan ;
Yuan, Xiaohui ;
Tian, Hao ;
Ji, Bin .
ENERGY CONVERSION AND MANAGEMENT, 2014, 78 :306-315
[8]   HYDRO TURBINE MODEL FOR SYSTEM DYNAMIC STUDIES [J].
DEJAEGER, E ;
JANSSENS, N ;
MALFLIET, B ;
VANDEMEULEBROEKE, F .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1994, 9 (04) :1709-1715
[9]   HYDRAULIC-TURBINE AND TURBINE CONTROL-MODELS FOR SYSTEM DYNAMIC STUDIES [J].
DEMELLO, FP ;
KOESSLER, RJ ;
AGEE, J ;
ANDERSON, PM ;
DOUDNA, JH ;
FISH, JH ;
HAMM, PAL ;
KUNDUR, P ;
LEE, DC ;
ROGERS, GJ ;
TAYLOR, C .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1992, 7 (01) :167-179
[10]  
DOERFLER PK, 1998, IAHR SECTION HYDR MA