Constructing projections on sums and intersections

被引:47
作者
Piziak, R [1 ]
Odell, PL [1 ]
Hahn, R [1 ]
机构
[1] Baylor Univ, Dept Math, Waco, TX 76798 USA
关键词
projection; pseudoinverse;
D O I
10.1016/S0898-1221(98)00242-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we list several formulas for computing orthogonal projections onto the linear sum and intersection of two subspaces of C-n in terms of the projections on the individual subspaces. (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:67 / 74
页数:8
相关论文
共 12 条
[1]   SERIES AND PARALLEL ADDITION OF MATRICES [J].
ANDERSON, WN ;
DUFFIN, RJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1969, 26 (03) :576-&
[2]  
ANDERSON WN, 1972, ACTA SCI MATH, V33, P165
[3]  
BENISRAEL A, 1974, GEN INVERSES THEORY
[4]  
Berberian S. K., 1961, INTRO HILBERT SPACES
[5]  
GROETSCH CW, 1977, GENERALIZED INVERSES
[6]  
Halmos, 2012, HILBERT SPACE PROBLE, V19
[7]   LATTICE PROPERTIES OF THE STAR-ORDER FOR COMPLEX MATRICES [J].
HARTWIG, RE ;
DRAZIN, MP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1982, 86 (02) :359-378
[8]   PROJECTIONS IN BANACH ALGEBRAS [J].
KAPLANSKY, I .
ANNALS OF MATHEMATICS, 1951, 53 (02) :235-249
[9]  
PIZIAK R, 1970, J NAT SCI MATH, V10, P215
[10]  
Rao C. R., 1971, GEN INVERSE MATRICES, V135, P197