Neural clustering analysis of macroevolutionary and genetic algorithms in the evolution of robot controllers

被引:0
作者
Becerra, JA [1 ]
Santos, J [1 ]
机构
[1] Univ A Coruna, Grp Sistemas Autonomos, Dept Computac, Fac Informat, La Coruna, Spain
来源
ARTIFICIAL INTELLIGENCE AND KNOWLEDGE ENGINEERING APPLICATIONS: A BIOINSPIRED APPROACH, PT 2, PROCEEDINGS | 2005年 / 3562卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we will use self-organizing feature maps as a method of visualization the sampling of the fitness space considered by the populations of two evolutionary methods, genetic and macroevolutionary algorithms, in a case with a mostly flat fitness landscape and low populations. Macroevolutionary algorithms will allow obtaining better results due to the way in which they handle the exploration-exploitation equilibrium. We test it with different alternatives using the self-organizing maps.
引用
收藏
页码:415 / 424
页数:10
相关论文
共 10 条
[1]   Robot controller evolution with macroevolutionary algorithms [J].
Becerra, JA ;
Santos, J ;
Duro, RJ .
INFORMATION PROCESSING WITH EVOLUTIONARY ALGORITHMS: FROM INDUSTRIAL APPLICATIONS TO ACADEMIC SPECULATIONS, 2005, :117-127
[2]  
Becerra JA, 2002, PROCEEDINGS OF THE 6TH JOINT CONFERENCE ON INFORMATION SCIENCES, P626
[3]  
DEJONG KA, 1975, THESIS U MICHIGAN AN
[4]  
KOHONEN T, 1984, SERIES INFORMATION S, V8
[5]   Macroevolutionary algorithms:: A new optimization method on fitness landscapes [J].
Marín, J ;
Solé, RV .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 1999, 3 (04) :272-286
[6]  
Menczer F, 2001, ADVANCES IN EVOLUTIONARY SYNTHESIS OF INTELLIGENT AGENTS, P337
[7]  
*NEUR INC, NEUR VERS 4 2
[8]  
Nolfi S., 2000, EVOLUTIONARY ROBOTIC
[9]  
Romero G, 2003, LECT NOTES COMPUT SC, V2686, P534
[10]   Considerations in the application of evolution to the generation of robot controllers [J].
Santos, J ;
Duro, RJ ;
Becerra, JA ;
Crespo, JL ;
Bellas, F .
INFORMATION SCIENCES, 2001, 133 (3-4) :127-148