Spin-splitting in a reflective beam off an antiferromagnetic surface

被引:9
作者
Fu, Shu-Fang
Wang, Xiang-Guang
Zhang, Yu-Qi
Zhou, Sheng
Wang, Xuan-Zhang [1 ]
机构
[1] Harbin Normal Univ, Chinese Minist Educ, Key Lab Photon & Elect Bandgap Mat, Harbin 150025, Peoples R China
关键词
GOOS-HANCHEN SHIFT; LIGHT;
D O I
10.1364/OE.435243
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A linearly-polarized radiation can be considered as the superposition of two circularlypolarized components with the same propagating direction and opposite spins. We investigated the splitting between the two spin-components in the reflective beam off the antiferromagnetic surface. The gyromagnetism and surface impedance mismatch cause the difference between the spatial shifts of the two spin-components, i.e., the spin-splitting. We analytically achieved the in- and out-plane shift-expressions of either spin-component for two typical linearly-polarized incident beams (i.e., the p- and s-incidences). In the case of no gyromagnetism, we obtained very simple shift-expressions, which indicate a key role played by the gyromagnetism or the surface impedance-mismatch in spin-splitting. Based on a FeF2 crystal, the spin-splitting distance was calculated. The spin-splitting distance is much longer for the p-incidence than the s-incidence, and meanwhile the in-plane splitting distance is much larger than the out-plane one. The gyromagnetism plays a key role for the in-plane spin-splitting and the surface impedancemismatch is a crucial factor for the out-plane spin-splitting distance. The results are useful for the manipulation of infrared radiations and infrared optical detection. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:39125 / 39136
页数:12
相关论文
共 31 条
[1]   Theory of far infrared properties of magnetic surfaces, films and superlattices [J].
Abraha, K ;
Tilley, DR .
SURFACE SCIENCE REPORTS, 1996, 24 (5-6) :129-222
[2]   Goos-Hanchen and Imbert-Fedorov shifts: a novel perspective [J].
Aiello, Andrea .
NEW JOURNAL OF PHYSICS, 2012, 14
[3]   Goos-Hanchen and Imbert-Fedorov beam shifts: an overview [J].
Bliokh, K. Y. ;
Aiello, A. .
JOURNAL OF OPTICS, 2013, 15 (01)
[4]   Transmission gap, Bragg-like reflection, and Goos-Haumlnchen shifts near the Dirac point inside a negative-zero-positive index metamaterial slab [J].
Chen, Xi ;
Wang, Li-Gang ;
Li, Chun-Fang .
PHYSICAL REVIEW A, 2009, 80 (04)
[5]   Huge Goos-Hanchen effect for spin waves: A promising tool for study magnetic properties at interfaces [J].
Dadoenkova, Yu. S. ;
Dadoenkova, N. N. ;
Lyubchanskii, I. L. ;
Sokolovskyy, M. L. ;
Klos, J. W. ;
Romero-Vivas, J. ;
Krawczyk, M. .
APPLIED PHYSICS LETTERS, 2012, 101 (04)
[6]   Goos-Hanchen effect in the gaps of photonic crystals [J].
Felbacq, D ;
Moreau, A ;
Smaâli, R .
OPTICS LETTERS, 2003, 28 (18) :1633-1635
[7]   *EIN NEUER UND FUNDAMENTALER VERSUCH ZUR TOTALREFLEXION [J].
GOOS, F ;
HANCHEN, H .
ANNALEN DER PHYSIK, 1947, 1 (7-8) :333-346
[8]   Dyakonov surface magnons and magnon polaritons [J].
Hao, Shaopeng ;
Fu, Shufang ;
Zhou, Sheng ;
Wang, Xuan-Zhang .
PHYSICAL REVIEW B, 2021, 104 (04)
[9]   Spin Hall effect of light in metallic reflection [J].
Hermosa, N. ;
Nugrowati, A. M. ;
Aiello, Andrea ;
Woerdman, J. P. .
OPTICS LETTERS, 2011, 36 (16) :3200-3202
[10]   Tunable spin-dependent splitting of light beam in a chiral metamaterial slab [J].
Huang, Y. Y. ;
Yu, Z. W. ;
Gao, Lei .
JOURNAL OF OPTICS, 2014, 16 (07)