A rapid, high-throughput analytical method was developed and evaluated for the simultaneous determination of pesticides and environmental contaminants in fish. The compounds included polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and flame retardants. The method was based on a QuEChERS (quick, easy, cheap, effective, rugged, and safe) technique with acetonitrile extraction, and a dispersive solid-phase extraction (dSPE) cleanup. Three sorbent combinations were compared for cleanup efficiency and recoveries of the contaminants: C18+PSA, traditionally used for lipid removal in dSPE, and two novel sorbents, based on silica coated with zirconium dioxide (ZrO2) and ZrO2/C18, designed for phospholipid removal. The dSPE cleanup with ZrO2 sorbent provided the highest efficiency with the lowest baseline, as well as satisfactory recoveries (70-120% calculated based on isotope-labelled internal standards) for most analytes. The method allows for quick sample preparation of fish samples for the analysis of almost 200 targeted contaminants using fast, low-pressure gas chromatography with tandem mass spectrometry (low-pressure GC MS MS), thus providing a wide scope of analysis.