On the solvability of one multidimensional version of the first Darboux problem for some nonlinear wave equations

被引:8
作者
Kharibegashvili, S. [1 ]
机构
[1] Georgian Acad Sci, A Razmadze Math Inst, Tbilisi, Georgia
关键词
nonlinear wave equations; a multidimensional version of the first Darboux problem; global solvability of the problem; blow-up of solutions;
D O I
10.1016/j.na.2006.11.047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, for wave equations with power nonlinearity we investigate the problem of the existence or nonexistence of global solutions of a Multidimensional version of the first Darboux problem in the conic domain. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:912 / 924
页数:13
相关论文
共 31 条
[1]  
Aassila M., 2001, DIFFERENTIAL INTEGRA, V14, P1301
[2]  
[Anonymous], 1983, BOUNDARY VALUE PROBL
[3]  
[Anonymous], 1988, NONLINEAR DIFFERENTI
[4]  
[Anonymous], 1973, CONCISE COURSE THEOR
[5]   Finite-time blow-up of solutions to semilinear wave equations [J].
Belchev, E ;
Kepka, M ;
Zhou, ZF .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 190 (01) :233-254
[6]  
Bitsadze A. V., 1981, Some Classes of Partial Differential Equations
[7]  
BITSADZE AV, 1962, DOKL AKAD NAUK SSSR+, V143, P1017
[8]   Weighted Strichartz estimates and global existence for semilinear wave equations [J].
Georgiev, V ;
Lindblad, H ;
Sogge, CD .
AMERICAN JOURNAL OF MATHEMATICS, 1997, 119 (06) :1291-1319
[9]   THE GLOBAL CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR-WAVE EQUATION [J].
GINIBRE, J ;
SOFFER, A ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1992, 110 (01) :96-130
[10]  
GUEDDA M, 2002, ELECT J DIFFER EQU, P1