Rotating machinery fault diagnosis for imbalanced data based on decision tree and fast clustering algorithm

被引:16
|
作者
Zhang, Xiaochen [1 ]
Jiang, Dongxiang [1 ]
Long, Quan [1 ]
Han, Te [1 ]
机构
[1] Tsinghua Univ, Dept Thermal Engn, State Key Lab Power Syst, Beijing 100084, Peoples R China
关键词
fault diagnosis; imbalanced data; fast clustering algorithm; decision tree; rotating machinery; EMPIRICAL MODE DECOMPOSITION; FAST SEARCH; FIND; CLASSIFICATION;
D O I
10.21595/jve.2017.18373
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
To diagnose rotating machinery fault for imbalanced data, a kind of method based on fast clustering algorithm and decision tree is proposed. Combined with wavelet packet decomposition and isometric mapping (Isomap), sensitive features of different faults can be obtained so the imbalanced fault sample set is constituted. Then the fast clustering algorithm is applied to search core samples from the majority data of the imbalanced fault sample set. Consequently, the balanced fault sample set consisted of the clustered data and the minority data is built. After that, decision tree is trained with the balanced fault sample set to get the fault diagnosis model. Finally, gearbox fault data set and rolling bearing fault data set are used to test the fault diagnosis model. The experiment results show that proposed fault diagnosis model could accurately diagnose the rotating machinery fault for imbalanced data.
引用
收藏
页码:4247 / 4259
页数:13
相关论文
共 50 条
  • [21] A Contrastive Learning-Based Fault Diagnosis Method for Rotating Machinery With Limited and Imbalanced Labels
    Zhang, Yan
    Liu, Zhuolin
    Huang, Qingqing
    IEEE SENSORS JOURNAL, 2023, 23 (14) : 16402 - 16412
  • [22] A novel digital twin method based on diffusion models for imbalanced fault diagnosis of rotating machinery
    Jiang, Zeyu
    Ren, Zhaohui
    Zhang, Yongchao
    Zhou, Shihua
    Yu, Tianzhuang
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2024,
  • [23] Imbalanced fault diagnosis of rotating machinery using autoencoder-based SuperGraph feature learning
    Jie Liu
    Kaibo Zhou
    Chaoying Yang
    Guoliang Lu
    Frontiers of Mechanical Engineering, 2021, 16 : 829 - 839
  • [24] Imbalanced fault diagnosis of rotating machinery using autoencoder-based SuperGraph feature learning
    Jie LIU
    Kaibo ZHOU
    Chaoying YANG
    Guoliang LU
    Frontiers of Mechanical Engineering, 2021, (04) : 829 - 839
  • [25] Imbalanced fault diagnosis of rotating machinery using autoencoder-based SuperGraph feature learning
    Liu, Jie
    Zhou, Kaibo
    Yang, Chaoying
    Lu, Guoliang
    FRONTIERS OF MECHANICAL ENGINEERING, 2021, 16 (04) : 829 - 839
  • [26] Batch channel normalized-CWGAN with Swin Transformer for imbalanced data fault diagnosis of rotating machinery
    Fu, Wenlong
    Zheng, Bo
    Li, Shuai
    Liao, Weiqing
    Huang, Yuguang
    Chen, Xiaoyue
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (01)
  • [27] Data Fusion Generative Adversarial Network for Multi-Class Imbalanced Fault Diagnosis of Rotating Machinery
    Liu, Qianjun
    Ma, Guijun
    Cheng, Cheng
    IEEE ACCESS, 2020, 8 : 70111 - 70124
  • [28] Fault diagnosis of rotating machinery based on graph data deep mining
    Liu, Jie
    Yang, Chaoying
    Zhou, Kaibo
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49 (09): : 1 - 5
  • [29] Enhanced generative adversarial networks for bearing imbalanced fault diagnosis of rotating machinery
    Yandong Hou
    Jiulong Ma
    Jinjin Wang
    Tianzhi Li
    Zhengquan Chen
    Applied Intelligence, 2023, 53 : 25201 - 25215
  • [30] Enhanced generative adversarial networks for bearing imbalanced fault diagnosis of rotating machinery
    Hou, Yandong
    Ma, Jiulong
    Wang, Jinjin
    Li, Tianzhi
    Chen, Zhengquan
    APPLIED INTELLIGENCE, 2023, 53 (21) : 25201 - 25215