Optimization problems face random constraint violations when uncertainty arises in constraint parameters. Effective ways of controlling such violations include risk constraints, e.g., chance constraints and conditional Value-at-Risk constraints. This paper studies these two types of risk constraints when the probability distribution of the uncertain parameters is ambiguous. In particular, we assume that the distributional information consists of the first two moments of the uncertainty and a generalized notion of unimodality. We find that the ambiguous risk constraints in this setting can be recast as a set of second-order cone (SOC) constraints. In order to facilitate the algorithmic implementation, we also derive efficient ways of finding violated SOC constraints. Finally, we demonstrate the theoretical results via computational case studies on power system operations.
机构:
Univ London Imperial Coll Sci Technol & Med, Imperial Coll Business Sch, London SW7 2AZ, EnglandUniv London Imperial Coll Sci Technol & Med, Imperial Coll Business Sch, London SW7 2AZ, England
Wiesemann, Wolfram
Kuhn, Daniel
论文数: 0引用数: 0
h-index: 0
机构:
Ecole Polytech Fed Lausanne, Coll Management & Technol, CH-1015 Lausanne, SwitzerlandUniv London Imperial Coll Sci Technol & Med, Imperial Coll Business Sch, London SW7 2AZ, England
Kuhn, Daniel
Sim, Melvyn
论文数: 0引用数: 0
h-index: 0
机构:
Natl Univ Singapore, Dept Decis Sci, NUS Business Sch, Singapore 119077, SingaporeUniv London Imperial Coll Sci Technol & Med, Imperial Coll Business Sch, London SW7 2AZ, England
机构:
Univ London Imperial Coll Sci Technol & Med, Imperial Coll Business Sch, London SW7 2AZ, EnglandUniv London Imperial Coll Sci Technol & Med, Imperial Coll Business Sch, London SW7 2AZ, England
Wiesemann, Wolfram
Kuhn, Daniel
论文数: 0引用数: 0
h-index: 0
机构:
Ecole Polytech Fed Lausanne, Coll Management & Technol, CH-1015 Lausanne, SwitzerlandUniv London Imperial Coll Sci Technol & Med, Imperial Coll Business Sch, London SW7 2AZ, England
Kuhn, Daniel
Sim, Melvyn
论文数: 0引用数: 0
h-index: 0
机构:
Natl Univ Singapore, Dept Decis Sci, NUS Business Sch, Singapore 119077, SingaporeUniv London Imperial Coll Sci Technol & Med, Imperial Coll Business Sch, London SW7 2AZ, England