Experimental investigation of the thermal transport properties of a carbon nanohybrid dispersed nanofluid

被引:85
作者
Baby, Tessy Theres [1 ]
Ramaprabhu, Sundara [1 ]
机构
[1] Indian Inst Technol, Dept Phys, AENL, NFMTC, Madras 600036, Tamil Nadu, India
关键词
CONDUCTIVITY ENHANCEMENT; ETHYLENE-GLYCOL; NANOTUBES; SUSPENSIONS; STORAGE; GROWTH;
D O I
10.1039/c0nr01024c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A hybrid nanostructure consisting of 1D carbon nanotubes and 2D graphene was successfully synthesized. Nanofluids were made by dispersing the hybrid nanostructure in deionized (DI) water and ethylene glycol (EG) separately, without any surfactant. Later the thermal conductivity and heat transfer coefficient of the nanofluids were experimentally measured. Meanwhile, multiwalled carbon nanotubes (MWNT) were prepared by catalytic chemical vapor deposition (CCVD), and hydrogen exfoliated graphene (HEG) was synthesized by exfoliating graphite oxide in a hydrogen atmosphere. The hybrid nanostructure (f-MWNT+f-HEG) of functionalized MWNT (f-MWNT) and functionalized HEG (f-HEG) was prepared by a post mixing technique, and the sample was characterized by powder X-ray diffraction, Raman spectroscopy, field emission scanning electron microscopy and transmission electron microscopy. Thermal conductivity of the nanofluids was measured for different volume fractions of f-MWNT+f-HEG at different temperatures. The hybrid nanostructure dispersed in the DI water based nanofluid shows a thermal conductivity enhancement of 20% for a volume fraction of 0.05%. Similarly, for a Reynolds number of 15 500, the enhancement of the heat transfer coefficient is about 289% for a 0.01% volume fraction of f-MWNT+f-HEG.
引用
收藏
页码:2208 / 2214
页数:7
相关论文
共 37 条
[1]   Investigation of thermal and electrical conductivity of graphene based nanofluids [J].
Baby, Tessy Theres ;
Ramaprabhua, S. .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (12)
[2]   SiO2 coated Fe3O4 magnetic nanoparticle dispersed multiwalled carbon nanotubes based amperometric glucose biosensor [J].
Baby, Tessy Theres ;
Ramaprabhu, S. .
TALANTA, 2010, 80 (05) :2016-2022
[3]  
BABY TT, NANOSCALE R IN PRESS
[4]   The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol plus water mixtures [J].
Beck, Michael P. ;
Yuan, Yanhui ;
Warrier, Pramod ;
Teja, Amyn S. .
JOURNAL OF NANOPARTICLE RESEARCH, 2010, 12 (04) :1469-1477
[5]   Unusually high thermal conductivity of carbon nanotubes [J].
Berber, S ;
Kwon, YK ;
Tománek, D .
PHYSICAL REVIEW LETTERS, 2000, 84 (20) :4613-4616
[6]   Mechanical energy storage in carbon nanotube springs [J].
Chesnokov, SA ;
Nalimova, VA ;
Rinzler, AG ;
Smalley, RE ;
Fischer, JE .
PHYSICAL REVIEW LETTERS, 1999, 82 (02) :343-346
[7]   Anomalous thermal conductivity enhancement in nanotube suspensions [J].
Choi, SUS ;
Zhang, ZG ;
Yu, W ;
Lockwood, FE ;
Grulke, EA .
APPLIED PHYSICS LETTERS, 2001, 79 (14) :2252-2254
[8]   Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids) [J].
Ding, YL ;
Alias, H ;
Wen, DS ;
Williams, RA .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2006, 49 (1-2) :240-250
[9]  
Dittus F.W., 1985, Int. Commun. Heat Mass, V12, P3, DOI [10.1016/0735-1933(85)90003-X, DOI 10.1016/0735-1933(85)90003-X]
[10]   Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles [J].
Eastman, JA ;
Choi, SUS ;
Li, S ;
Yu, W ;
Thompson, LJ .
APPLIED PHYSICS LETTERS, 2001, 78 (06) :718-720