Generalized massive optimal data compression

被引:78
作者
Alsing, Justin [1 ,2 ]
Wandelt, Benjamin [1 ,3 ,4 ,5 ]
机构
[1] Flatiron Inst, Ctr Computat Astrophys, 162 5th Ave, New York, NY 10010 USA
[2] Imperial Coll London, Imperial Ctr Inference & Cosmol, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England
[3] Sorbonne Univ, UPMC Univ Paris 6, CNRS, IAP,UMR 7095, 98Bis Blvd Arago, F-75014 Paris, France
[4] Sorbonne Univ, ILP, 98Bis Blvd Arago, F-75014 Paris, France
[5] Univ Illinois, Dept Phys & Astron, 1002 W Green St, Urbana, IL 61801 USA
关键词
methods: data analysis; PARAMETER-ESTIMATION; SPECTRA;
D O I
10.1093/mnrasl/sly029
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, we provide a general procedure for optimally compressing N data down to n summary statistics, where n is equal to the number of parameters of interest. We show that compression to the score function - the gradient of the log-likelihood with respect to the parameters - yields n compressed statistics that are optimal in the sense that they preserve the Fisher information content of the data. Our method generalizes earlier work on linear Karhunen-Loeve compression for Gaussian data whilst recovering both lossless linear compression and quadratic estimation as special cases when they are optimal. We give a unified treatment that also includes the general non-Gaussian case as long as mild regularity conditions are satisfied, producing optimal non-linear summary statistics when appropriate. As a worked example, we derive explicitly the n optimal compressed statistics for Gaussian data in the general case where both the mean and covariance depend on the parameters.
引用
收藏
页码:L60 / L64
页数:5
相关论文
共 29 条
[1]   Approximate Bayesian computation for forward modeling in cosmology [J].
Akeret, Joel ;
Refregier, Alexandre ;
Amara, Adam ;
Seehars, Sebastian ;
Hasner, Caspar .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2015, (08)
[2]  
[Anonymous], MNRAS
[3]  
[Anonymous], 2012, STAT CHALLENGES MODE
[4]   Radical compression of cosmic microwave background data [J].
Bond, JR ;
Jaffe, AH ;
Knox, L .
ASTROPHYSICAL JOURNAL, 2000, 533 (01) :19-37
[5]   Estimating the power spectrum of the cosmic microwave background [J].
Bond, JR ;
Jaffe, AH ;
Knox, L .
PHYSICAL REVIEW D, 1998, 57 (04) :2117-2137
[6]   Approximate Bayesian Computation for astronomical model analysis: a case study in galaxy demographics and morphological transformation at high redshift [J].
Cameron, E. ;
Pettitt, A. N. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 425 (01) :44-65
[7]  
Carassou S., 2017, A A, V605, P23
[8]   Automatic physical inference with information maximizing neural networks [J].
Charnock, Tom ;
Lavaux, Guilhem ;
Wandelt, Benjamin D. .
PHYSICAL REVIEW D, 2018, 97 (08)
[9]   A New Method to Measure the Post-reionization Ionizing Background from the Joint Distribution of Lyα and Lyβ Forest Transmission [J].
Davies, Frederick B. ;
Hennawi, Joseph F. ;
Eilers, Anna-Christina ;
Lukic, Zarija .
ASTROPHYSICAL JOURNAL, 2018, 855 (02)
[10]   An investigation into the Multiple Optimised Parameter Estimation and Data compression algorithm [J].
Graff, Philip ;
Hobson, Michael P. ;
Lasenby, Anthony .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 413 (01) :L66-L70